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ABSTRACT 
A data set comprising of the selectivity index of pentachlorophenol-imprinted polymers 
against 53 pentachlorophenol and related compounds was obtained from the excellent work of 
Baggiani et al. Molecular descriptors of the phenol compounds were calculated with E-
DRAGON to obtain a total of 1,666 descriptors spanning 20 categories of molecular 
properties. Multivariate analysis of the data set was performed using multiple linear 
regression, partial least squares regression, and principal component regression. Partial least 
squares regression was found to deliver an excellent predictive model and was chosen for 
further investigation. The descriptor dimension was reduced by the combined use of partial 
least squares and Unsupervised Forward Selection algorithm. The obtained Quantitative 
Structure-Property Relationship (QSPR) model based on the smaller subset of the molecular 
descriptors displayed substantial gain in predictive ability when compared to the model of 
Baggiani et al. Such QSPR model can help in the computational design of MIPs with 
predefined selectivity toward template molecules of interest. 
 
Keywords: selectivity, pentachlorophenol, molecularly imprinted polymer, partial least 
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INTRODUCTION 
 

Molecular imprinting is a technique that 
enables the production of artificial receptors 
that is tailor-made to any given target 
molecule of interest. Upon removal of the 
template, receptors possessing specific and 
selective recognition are formed within the 
macromolecular matrix of the molecularly 
imprinted polymer (MIP). Some of the 
advantages of MIPs over biological receptors 
are their ease of preparation and durability 
(Bruggemann, 2002; Haupt, 2003).  
Successful applications of MIPs have been 
demonstrated as separation media (Martin-
Esteban, 2001; Turiel and Martin-Esteban, 
2004; Takeuchi and Haginaka, 1999; 
Tamayo and Martin-Esteban, 2005; 
Machtejevas et al., 2004; Spegel et al., 2003; 

Watabe et al., 2006), enzyme mimetics 
(Piacham et al., 2003), artificial receptors 
(Hsieh et al., 2006; Chianella et al., 2002; 
Ramstrom et al., 1996), recognition elements 
of biosensors (Piacham et al., 2005), 
synthetic receptors for drug assays (Vlatakis 
et al., 1993; Sellergren and Andersson, 2000; 
Piletsky et al., 2000; Ansell and Mosbach, 
1998; Ye et al., 2002) and serologic tests (Tai 
et al., 2006), and nanofactories for synthesis 
of enzyme inhibitors (Ye et al., 2001; 
Mosbach et al., 2001). 

Phenolic compounds are commonly used 
as raw material for petrochemical, 
pharmaceutical, plastic, and pesticide 
industry (Ahlborg and Thunberg, 1980; 
Exon, 1984). Common consumer products 
made of phenol include detergents, plastic 
packagings, polycarbonate plastic coatings of 
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compact discs, aspirins and other 
pharmaceuticals. In fact, phenol ranked 
among the top 50 chemicals produced in the 
United States (1998). The adverse effects of 
phenols have been summarized by the U.S. 
Environmental Protection Agency (Bruce et 
al., 1987). A variety of methods have been 
attempted for the detection and removal of 
phenols such as whole-cell based biosensors 
(Shaw et al., 1999; Sinclair et al., 1999; 
Weitz et al., 2002),  phytoremediation 
(Santos de Araujo et al., 2002; Harvey et al., 
2002; Agostini et al., 2003), enzymatic 
detoxification (Wang et al., 2004; Bollag et 
al., 1988; Wright and Nicell, 1999; Buchanan 
and Nicell, 1997), photochemical 
degradation (Catalkaya et al., 2003; Bali et 
al., 2003), Fenton reaction (Kavitha and 
Palanivelu, 2004; Detomaso et al., 2003), and 
degradation by acoustic cavitation (Gogate et 
al., 2004). 

Alternatively, detection and removal of 
phenolic compounds may be achieved by 
molecular imprinting. This endeavor has 
been realized using bisphenol A (Sanbe et 
al., 2003; Sanbe and Haginaka, 2003), 
nitrophenols (Huang et al., 2003; Caro et al., 
2003; Caro et al., 2002; Masque et al., 2000), 
and chlorophenols (Caro et al., 2003; 
Baggiani et al., 2004) as templates for 
preparation of molecularly imprinted 
polymers possessing selectivity and 
specificity toward the compounds. Baggiani 
et al. prepared a pentachlorophenol-
imprinted polymer and explored its 
selectivity against a library of 52 phenolic 
compounds comprising of chloro-, alkyl-, 
aryl-, methoxy-, and polyphenols. In their 
study, quantitative structure-retention 
relationship was constructed and modeled by 
principal component regression using 
molecular descriptors derived from quantum 
chemical calculations.  

We have previously proposed the 
feasibility of using molecular descriptors, 
which were derived from molecular charge 
densities of template and functional 
monomer molecules, with artificial neural 
networks for prediction of the imprinting 
factors of MIPs (Nantasenamat et al., 2005a). 
Artificial neural networks were demonstrated 

to be a suitable modeling method for 
biological and chemical systems in our 
previous studies (Nantasenamat et al., 2005a; 
Nantasenamat et al., 2005b; Nantasenamat et 
al., 2006). In the present investigation, we 
further the development of a robust 
quantitative structure-property relationship 
(QSPR) model for the prediction of 
selectivity index using an extensive library of 
molecular descriptors provided by E-
DRAGON. The molecular descriptors 
comprising of 20 categorical blocks provided 
a thorough physicochemical representation of 
the phenol compounds. The mass number of 
descriptors was reduced sequentially via 
confidence interval filter or regression 
coefficients and multi-collinear variable 
removal. Partial least squares regression was 
demonstrated to be superior to principal 
component regression and was chosen as the 
method of choice for this investigation.  The 
final subset of variables showed good 
predictive ability in modeling the selectivity 
index of the pentachlorophenol-imprinted 
polymers toward related phenols. 
 

MATERIALS AND METHODS 
 
Data set 

The data set used in this study was taken 
from the work of Baggiani et al. In their 
study, Baggiani and co-workers prepared a 
pentachlorophenol-imprinted polymer using 
4-vinylpyridine as functional monomer, 
ethylene glycol dimethacrylate as cross-
linker, and methanol-water (3/1, v/v) as 
porogen. Chromatographic evaluation of the 
HPLC-packed polymer was performed 
against 52 PCP-related phenols comprising 
of 22 chloro-, 21 akly-, 4 aryl-, 3 methoxy-, 
and 6 polyphenols. The molecular 
recognition properties was evaluated from 
the selectivity index as calculated from the 
retention factors of non-imprinted polymer 
and imprinted polymer from the following 
equation: 
 

MIP

NIP

k
kSI =   (1) 
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Table 1: Summary of molecular descriptors calculated from E-DRAGON. 
 

No. Type of Descriptor No. of Descriptors 

1 Constitutional descriptors 48 
2 Topological descriptors 119 
3 Walk and path counts 47 
4 Connectivity indices 33 
5 Information indices 47 
6 2D autocorrelations 96 
7 Edge adjacency indices 107 
8 Burden eigenvalue descriptors 64 
9 Topological charge indices 21 
10 Eigenvalue-based indices 44 
11 Randic molecular profiles 41 
12 Geometrical descriptors 74 
13 RDF descriptors 150 
14 3D-MoRSE descriptors 160 
15 WHIM descriptors 99 
16 GETAWAY descriptors 197 
17 Functional group counts 154 
18 Atom-centred fragments 120 
19 Charge descriptors 14 
20 Molecular properties 29 

 
where SI is the selectivity index,  is the 
retention factor of non-imprinted polymers, 
and  is the retention factor of imprinted 
polymers. Therefore, a data set of 53 phenol 
compounds comprising of pentachlorophenol 
and 52 related phenols was obtained for this 
investigation. 

NIPk

MIPk

 
Molecular descriptors 

The chemical structures of the 53 phenol 
compounds were drawn with MarvinSketch 
(ChemAxon, Budapest, Hungary) and 
exported as SMILES (Weininger, 1988) 
notation. Next, phenol compounds 
represented by SMILES format was used as 
input for calculation of 1,666 molecular 
descriptors with the online software, E-
DRAGON (Tetko et al., 2005; VCCLAB). 
The software converted the molecules from 
SMILES notation to 3-dimensional structures 
using the algorithm derived from CORINA 
(Gasteiger et al., 1990; Sadowski et al., 1994; 
Sadowski and Gasteiger, 1993). The 
molecular descriptors comprising of 20 
descriptor blocks is shown in Table 1. The 
definition and description of these molecular 
descriptors was described by Todeschini et 
al. (Todeschini et al., 2000). 

Data Pre-processing 
The molecular descriptors were 

standardized to mean of zero and standard 
deviation of one with the following equation: 
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where  is the standardized value,  is 
the value of each sample, 

stn
ijx ijx

jx  is the mean of 
each descriptor, and  is the sample size of 
the data set. 

N

 
Multivariate analysis 

Three multivariate analysis methods 
comprising of multiple linear regression 
(MLR), partial least squares (PLS) 
regression, and principal component 
regression (PCR) were used to model the SI 
property of 53 phenols. All multivariate 
analysis was performed with The 
Unscrambler 9.6 software package (Camo 
Process AS, Norway) as previously described 
in our previous study (Nantasenamat et al., 
2006). The phenol compounds represented 
by 1,666 molecular descriptors were used as 
independent variables while SI was used as 
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dependent variable. The descriptor matrix 
comprising of several hundred variables were 
reduced to a few latent variables called 
Principal Components (PC). The PCs are 
orthogonal and are therefore not redundant 
since the PCs are perpendicular to one 
another (Esbensen, 2004). The optimal 
number of PCs was determined according to 
the method of Haaland and Thomas from a 
plot of PC against MSE using LOO-CV. 
Mean squared error (MSE) was calculated 
according to the following equation: 
 

n

ap
MSE

n
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where  is the predicted output,  is the 
actual output, and n is the number of 
compounds presented in the data set. 

ip ia

 
Reduction of descriptors 

Although PLS and PCR are able to 
handle data sets with multi-collinear 
variables, the rather large size of the 
variables is undesirable since it takes longer 
to calculate as well as not revealing crucial 
information, particularly the contributions of 
the variables in modeling the SI property. 
Constant variables were removed from the 
data set as they provide no useful 
information. Next, the data set was subjected 
to standardization according to equation 2. 
PLS regression was performed using PLS1 
algorithm. The regression coefficients 
derived from PLS regression was filtered by 
retaining those located outside the defined 
confidence interval, which was calculated 
according to the following equation: 
 

)( szxCI ×±=   (4) 
 
where  is the confidence interval, CI x  is 
the mean,  is the standard score of the level 
of confidence, and s  is the standard 
deviation. The level of confidence at 75, 80, 
90, 95, 99, and 99.9 % were used for variable 
reduction. Descriptors found within the 
defined confidence interval were removed 

while variables outside the defined 
confidence interval were retained. 

z

The second phase of variable reduction 
utilized the Unsupervised Forward Selection 
(UFS) program (Whitley et al., 2000), to 
further remove redundant variables while 
still maintaining the core information of the 
data set. The UFS algorithm was described in 
our previous study (Nantasenamat et al., 
2005a) and by Whitley et al. (Whitley et al., 
2000). 
 
Generation of training and testing sets 

Training and testing sets were generated 
according to the leave-one-out cross-
validation (LOO-CV) method (Nantasenamat 
et al., 2006; Witten and Frank, 2000). 
Briefly, one sample of the data set was left 
out as the testing set and the rest was used as 
the training set. This procedure was 
performed reiteratively until all samples of 
the data set were given the chance to be used 
as testing sets. 
 

RESULTS AND DISCUSSION 
 
Structural Considerations 

Factors governing the selectivity of MIPs 
were extensively reviewed by Spivak 
(Spivak, 2004; Spivak and Campbell, 2001). 
In the investigation by Baggiani et al., the 
core structure of the library compounds was 
based on phenol. However, each of the 
compounds differs in the substituent groups 
that they bear, which may consequently 
change the structural and electronic 
properties of the molecules. As a result, this 
affects the molecular recognition properties 
of the compounds toward the imprinted 
polymer. The molecular descriptors produced 
by E-DRAGON provide a thorough 
representation of the phenolic compounds 
investigated in this study. Thus, the observed 
property differences among the different 
phenolic compounds can be attributed to 
their structural deviations and this is well 
accounted for by the molecular descriptors. 
The ability to model the selectivity index 
provides useful insights on the theoretical 
design of novel artificial receptors specific 
for pentachlorophenol and related 
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Table 2: Initial comparison of quantum chemical and E-DRAGON descriptors.  
 

Quantum chemical descriptors E-DRAGON descriptors Correlation 
coefficient PLS1 PCR PLS1 PCR 

rTraining a 0.8571 0.8516  0.9447 0.8250 
rTesting b 0.8331 0.8333  0.8441 0.7869 
 
a Training set correlation coefficient 
b Testing set correlation coefficient 
 
compounds based on molecular imprinting. 
Furthermore, the QSPR model could be used 
to help control the degree of polymer 
selectivity toward pentachlorophenol and 
related phenols. Therefore, MIPs with 
predefined selectivity toward template 
molecule of interest could be realized. 
 
Initial Comparison of Molecular Descriptors 

Assessment of the initial performance of 
unprocessed data set prior to optimization of 
the number of molecular descriptors was 
performed and results are presented in Table 
2. It was observed that PLS and PCR 
performed at similar level of performance 
when using quantum chemical descriptors. 
On the other hand, PLS yield better results 
than PCR when E-DRAGON descriptors 
were used. Both types of molecular 
descriptors shows similar level of 
performance as indicated from the testing set 
correlation coefficient in excess of 0.83 for 
quantum chemical descriptors modeled by 
PLS and PCR, and for E-DRAGON 
descriptors modeled by PLS. 
 
Reduction of Molecular Descriptors and 
Prediction of Selectivity Index 

The      intial     number     of     molecular 
descriptors    derived      from    E-DRAGON 

amounted to 1,666 variables. They were 
scaled to mean of zero and unit variance by 
standardization using equation 2. The 
Unscrambler software detected that 436 were 
constant variables and was automatically 
removed to yield a reduced set of 1,230 
descriptors. Of the two PC-based regression 
methods, PLS was found to perform better 
than PCR as observed from the greater 
correlation coefficent values. PLS had 
training set correlation coefficient (rTraining) 
and testing set correlation coefficient (rTesting) 
of 0.9447 and 0.8441, respectively, while 
PCR obtained rTraining = 0.8250 and rTesting = 
0.7869. Therefore, PLS was chosen as the 
optimal PC-based regression method for 
further investigations. 

The variables were filtered according to 
equation 4 based on the confidence interval 
of regression coefficients derived from PLS. 
Briefly, those situating inside the defined 
confidence interval were removed as they 
were considered to be redundant variables, 
whereas those located outside the defined 
confidence interval were retained for further 
processing. For example, at the 90% 
confidence interval 1,113 variables were 
found located outside the confidence interval, 
thus warranting their removal from the data 
set. This generated a reduced subset of 117 

 
Table 3: Summary of variable selection as a function of the level of confidence. 
 

CI (%) z-score NCI
Training

CIr  Testing
CIr  NCI+UFS

Training
UFSCIr +  Testing

UFSCIr +  

75.0 1.15 235 0.9580 0.8937 43 0.9377 0.8245 
80.0 1.28 195 0.9472 0.8866 43 0.9484 0.8579 
90.0 1.65 117 0.9408 0.8837 40 0.9525 0.8913 
95.0 1.96 72 0.9111 0.8523 34 0.9205 0.8684 
99.0 2.58 38 0.8999 0.8492 23 0.9029 0.8629 
99.9 3.30 2 0.3782 0.1918 ― ― ― 

  
 

154



 
 
Figure 1: Plot of the PLS regression coefficients as a function of the variables. Descriptors 
marked with an empty circle were subjected to removal as they possess low regression 
coefficient values. 
 
variables. Second phase of filtering with UFS 
were performed to remove redundant multi-
collinear variables. The 117 variables were 
further reduced to a subset of 40 variables. 
The same procedures were performed for the 
other five level of confidence and are 
summarized in Table 3. The 40 variables 
were comprised of a mixture of steric and 
electronic descriptors as shown in Table 4. 
This subset of variables gave rather good 
predictive ability as indicated by the rTraining 
and   rTesting   values   of  0.9525  and  0.8913,  

respectively. 
A third phase of variable filtering was 

performed by removing descriptors 
possessing regression coefficient near the 
origin axis as observed from Figure 1. This 
led to the removal of 15 additional variables 
(Table 4), further condensing the variables to 
a subset of 25. The eliminated variables were 
made up of a combination of steric and 
electronic descriptors comprising mostly of 
2D autocorrelation indices, WHIM, and 
GETAWAY descriptors. The reduced subset

 

 
 
Figure 2: Plot of the MLR regression coefficients as a function of the variables. Descriptors 
marked with an empty circle were subjected to removal as they possess low regression 
coefficient values. 
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increased the predictive power slightly as 
observed from the rTraining and rTesting values 
of 0.9531 and 0.9054, respectively. 

The set of 25 variables was then modeled 
by MLR but was shown to give lower 
predictive power than the PLS model as 
indicated from the correlation coefficients of 
rTraining = 0.9681 and rTesting = 0.8772. A plot 
of the regression coefficients prompted 
further variable reduction by removing 
descriptors having low regression 
coefficients as shown in Figure 2. This 
resulted in the elimination of 9 variables to 
give an optimal set of 16 descriptors (Table 
4). The 9 variables were made up of 
topological descriptor, edge adjacency 
indices, topological charge indices, 3D-
MoRSE descriptors, and WHIM descriptors. 
Results indicated that the final phase of 
variable reduction on the MLR model 
boosted the predictive power significantly to 
rTraining = 0.9657 and rTesting = 0.9332. A plot 
of the predicted SI versus the experimental SI 
as modeled by MLR is shown in Figure 3A. 

For the benefit of comparison, the same 
set of 16 descriptors was then modeled by 
PLS (Figure 3B). It was observed that the 
predictive performance of PLS with rTraining = 
0.9636 and rTesting = 0.9380 was slightly 
higher than MLR but the superiority in 
performance was not significant. The 
superiority of PLS over MLR on the set of 25 
variables can possibly be explained by the 
non-linear nature of the descriptor matrix. 
Since the PLS approach is capable of 
handling non-linear data well, it outperforms 
the MLR approach. The removal of 9 
variables transformed the descriptor matrix 
to a linear form, which boosted the 
performance of MLR by 0.056 from the 
testing set correlation coefficient of rTesting = 
0.8772 to rTesting = 0.9332. The linearity of 
the data was confirmed further by the 
comparable level of performance of PLS to 
the linear MLR method as observed from the 
testing set correlation coefficient of rTesting = 
0.9380 and rTesting = 0.9332, respectively. It 
should be noted that when the data is of 
linear form, the non-linear approach is not 
necessary  and   so  reverts  to  the  simplified  
 

linear approach. 
 
Final Assessment of Molecular Descriptors 

Since the number of molecular 
descriptors for E-DRAGON has been 
optimized as outlined above, the next step is 
to assess the performance of the new QSPR 
model in relation to the previously reported 
model (Baggiani et al., 2004). A summary of 
the results is displayed in Table 5. The data 
set using quantum chemical descriptors was 
pre-processed according to Baggiani et al. 
(Baggiani et al., 2004) by removing 8 
variables to obtain a “minimum 
dimensionality model” that gave the same 
level of performance as the model using all 
descriptors. Furthermore, Baggiani et al. 
removed 3 outliers (sample number 48, 49, 
and 52) from their model, thus for the benefit 
of comparison, in this investigation the 
outliers were removed from the data sets. 
Results indicate that the quantum chemical 
descriptors gave similar level of performance 
for both PLS and PCR methods, whereas 
PLS was the better performing approach 
when E-DRAGON descriptors were used. 
The removal of 3 outliers did not exert a 
significant influence on the predictive 
performance of the PLS model as indicated 
from the slight drop in performance from 
rTesting = 0.9380 to rTesting = 0.9294 for the 
data set with all data samples intact and the 
data set omitting 3 outliers, respectively. 
 

CONCLUSION 
 

In summary, we have demonstrated the 
feasibility of using molecular descriptors 
derived from E-DRAGON in modeling the 
selectivity index of pentachlorophenol-
imprinted polymer. The variable reduction 
method used in this study starts with the 
reduction of the variable dimension from 
1,666 to 117 descriptors using the confidence 
interval approach. This is followed by further 
removal of multi-collinear variables with the 
UFS algorithm from 117 to 40 descriptors. 
Moreover, 15 additional descriptors were 
removed by filtering off descriptors bearing 
low PLS regression coefficient to give a set 
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Figure 3: Plot of the predicted SI as a function of the experimental SI for the training set (□; 
regression line is represented as dotted line) and testing set (■; regression line is 
represented as solid line). 

 
of 25 variables. A final phase of variable 
reduction was performed on the set of 25 
variables modeled by MLR using the same 
criteria as the previous step by removing 
variables with low MLR regression 
coefficients. Our results indicated that PLS 
regression and MLR reliably predicted the SI 
of the phenolic compounds as observed from 

the correlation coefficient of 0.9380 and 
0.9332, respectively. The QSPR model 
investigated in this study are valuable for 
predicting the selectivity index of a library of 
related compounds and provides theoretical 
guidance for molecular design as observed 
from the retention property as it is influenced 
by its substituents. 
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Table 4: Reduced subset of 40 descriptors obtained after variable reduction with UFS. 
 

Descriptor Description Type of descriptor 
nDB number of double bonds constitutional 

descriptors 
MAXDP maximal electrotopological positive variation topological 

descriptors 
ICR a radial centric information index topological 

descriptors 
T(O..O) b sum of topological distances between O..O topological 

descriptors 
MATS4m a Moran autocorrelation - lag 4 / weighted by atomic 

masses 
2D autocorrelation 
indices 

MATS6m Moran autocorrelation - lag 6 / weighted by atomic 
masses 

2D autocorrelation 
indices 

MATS3v Moran autocorrelation - lag 3 / weighted by atomic van 
der Waals volumes 

2D autocorrelation 
indices 

MATS4e a Moran autocorrelation - lag 4 / weighted by atomic 
Sanderson electronegativities 

2D autocorrelation 
indices 

MATS4p Moran autocorrelation - lag 4 / weighted by atomic 
polarizabilities 

2D autocorrelation 
indices 

GATS4m a Geary autocorrelation - lag 4 / weighted by atomic 
masses 

2D autocorrelation 
indices 

GATS5m Geary autocorrelation - lag 5 / weighted by atomic 
masses 

2D autocorrelation 
indices 

GATS4v a Geary autocorrelation - lag 4 / weighted by atomic van 
der Waals volumes 

2D autocorrelation 
indices 

GATS5p a Geary autocorrelation - lag 5 / weighted by atomic 
polarizabilities 

2D autocorrelation 
indices 

EEig08d b Eigenvalue 08 from edge adj. matrix weighted by dipole 
moments 

edge adjacency 
indices 

EEig12r Eigenvalue 12 from edge adj. matrix weighted by 
resonance integrals 

edge adjacency 
indices 

JGI1 a mean topological charge index of order1 topological charge 
indices 

JGI6 b mean topological charge index of order6 topological charge 
indices 

DISPm a d COMMA2 value / weighted by atomic masses geometrical 
descriptors  

RDF050m Radial Distribution Function - 5.0 / weighted by atomic 
masses 

RDF descriptors 

RDF035v Radial Distribution Function - 3.5 / weighted by atomic 
van der Waals volumes 

RDF descriptors 

Mor02m b 3D-MoRSE - signal 02 / weighted by atomic masses 3D-MoRSE 
descriptors 

Mor22m b 3D-MoRSE - signal 22 / weighted by atomic masses 3D-MoRSE 
descriptors 

Mor23m a 3D-MoRSE - signal 23 / weighted by atomic masses 3D-MoRSE 
descriptors 

Mor29e 3D-MoRSE - signal 29 / weighted by atomic Sanderson 
electronegativities 

3D-MoRSE 
descriptors 

G2u b 2st component symmetry directional WHIM index / 
unweighted 

WHIM descriptors 

G2m a 2st component symmetry directional WHIM index / 
weighted by atomic masses 

WHIM descriptors 
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G3m b 3st component symmetry directional WHIM index / 
weighted by atomic masses 

WHIM descriptors 

E1v b 1st component accessibility directional WHIM index / 
weighted by atomic van der Waals volumes 

WHIM descriptors 

G2e 2st component symmetry directional WHIM index / 
weighted by atomic Sanderson electronegativities 

WHIM descriptors 

G2p a 2st component symmetry directional WHIM index / 
weighted by atomic polarizabilities 

WHIM descriptors 

G3p b 3st component symmetry directional WHIM index / 
weighted by atomic polarizabilities 

WHIM descriptors 

E2p a 2nd component accessibility directional WHIM index / 
weighted by atomic polarizabilities 

WHIM descriptors 

Gu a G total symmetry index / unweighted WHIM descriptors 
H6u H autocorrelation of lag 6 / unweighted GETAWAY 

descriptors 
HATS5u a leverage-weighted autocorrelation of lag 5 / unweighted GETAWAY 

descriptors 
HATS5m leverage-weighted autocorrelation of lag 5 / weighted 

by atomic masses 
GETAWAY 
descriptors 

R5u+ a R maximal autocorrelation of lag 5 / unweighted GETAWAY 
descriptors 

R2e+ R maximal autocorrelation of lag 2 / weighted by atomic 
Sanderson electronegativities 

GETAWAY 
descriptors 

R7p+ R maximal autocorrelation of lag 7 / weighted by atomic 
polarizabilities 

GETAWAY 
descriptors 

Infective-80 Ghose-Viswanadhan-Wendoloski antiinfective-like 
index at 80% 

molecular properties 

 
a Set of 15 variables with low PLS regression coefficients were criteria for removal. 
b Set of 9 variables low MLR regression coefficients were criteria for removal. 
 
Table 5: Final assessment of quantum chemical and E-DRAGON descriptors.  
 

Quantum chemical descriptors c E-DRAGON descriptors dCorrelation 
coefficient PLS1 PCR PLS1 PCR 

rTraining a 0.8696 0.8687  0.9604 0.9364 
rTesting b 0.8429 0.8402  0.9294 0.8813 
 

Both data sets were subjected to removal of 3 outliers reported by Baggiani et al. (sample 
no. 48, 49, and 52). 
a Training set correlation coefficient 
b Testing set correlation coefficient 
c 7 descriptors derived from the “minimum dimensionality model” of ref. 48 
d 16 descriptors obtained from a series of variable filter and reduction 
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