PROTECTIVE EFFECT OF L-ORNITHINE-L-ASPARTATE AND SILIYMARIN ON CHEMICALLY INDUCED KIDNEY TOXICITY AND THYROID DYSFUNCTION IN MICE

Rameshwar Jatwa*, Anand Kar

Endocrine Research Unit, School of Life Sciences, Devi Ahilya University, Takshashila Campus, Indore- 452001, Madhya Pradesh, India Tel.: +91-731-2477166, Fax: +91 731 2360026.
*Corresponding author: E-mail: rjatwa80@hotmail.com

ABSTRACT

The present study was designed to reveal the hitherto unknown efficacy of two commonly used hepatoprotective drugs, L-ornithine-L-aspartate (lornit) and silymarin in the regulation of kidney toxicity and thyroid dysfunction in mice. Renal and hepatic lipid peroxidation (LPO) was induced by the administration of carbon tetrachloride (CCl4) for 2 weeks (2.0 gm/kg twice a week). In two separate groups, along with CCl4 animals were also treated with either lornit (200 mg/kg) or silymarin (100 mg/kg) every day for the same duration. Other than hepatic and renal LPO, alterations in the concentrations of serum triiodothyronine (T3), thyroxine (T4), glucose and insulin and in hepatic type-1 iodothyronine 5’monodeiodinase (5’DI) activity were considered as major parameters. Simultaneously activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and hepatic and renal superoxide dismutase (SOD), catalase (CAT) and reduced glutathione content (GSH) were also studied. Lornit or silymarin administration reversed almost all the toxic effects exhibited by CCl4 including enhanced tissue LPO, serum ALT, AST and ALP activities and the concentrations of insulin and glucose. Both test drugs also significantly increased hepatic 5’DI activity, cellular antioxidants such as SOD, CAT and GSH and serum levels of both the thyroid hormones.

Keywords: Carbon tetrachloride, L-ornithine-L-aspartate, lipid peroxidation, mice, thyroid hormones, type-1 iodothyronine 5’-monodeiodinase

INTRODUCTION

Liver dysfunction is a clinically relevant problem, which accounts a major population of all the reported cases of acute liver failure (Lee, 2003; Yamazaki et al., 2005). Therefore very often hepatoprotective drugs are recommended to ameliorate liver problems. L-ornithine-L-aspartate (lornit) and silymarin are two such commonly used hepatoprotective drugs which are claimed to be highly effective against chemical-induced toxicity (Maneesh and Jayalekshmi, 2005; Mansoors et al., 2006; Poo et al., 2006; Upadhyay et al., 2007; Balderas-Renteria et al., 2007; Jain et al., 2008). Although these two drugs have been reported to provide hepatic protection (Vogels et al., 1997; Rose et al., 1999), their potential to regulate kidney toxicity and thyroid dysfunction, if any, was yet to be established. Therefore, in the present investigation an attempt was made to reveal the relative efficacy of these two drugs to regulate kidney toxicity induced by carbon tetrachloride (CCl4). In fact, this drug has been used traditionally in rodent models to investigate the therapeutic interventions of hepatoprotective drugs (Paquet and Kamphausen,
1975; Clawson, 1989; Weber et al., 2003; He et al., 2006; Balderas-Renteria et al., 2007). Toxicity generated from its reactive metabolite involves induction of oxidative stress on tissues (Perez Tamayo, 1983; Clawson, 1989; Weber et al., 2003; He et al., 2006) that causes liver injury and invariably alters hepatobiliary functions and very often results in impairment of hormonal metabolism (Goel et al., 1994).

Despite the fact that most biologically active thyroid hormone, triiodothyronine (T3) is largely produced in liver by the process of mono-deiodination of thyroxine (T4) with the help of the enzyme type-1 iodothyronine 5’-monodeiodinase (5’DI, Ganong, 2005) and there is every possibility of alteration in thyroid hormones in chemical-induced hepatotoxicity, nothing has been reported so far on the effects of hepatoprotective drugs on the alteration of thyroid function.

In literature, lornit has already been reported to ameliorate acute liver failure (Rose et al., 1999; Vogels et al., 1997), CCl4-induced liver damage (Gebhardt et al., 1997), and hepatic encephalopathy (Kirchveis et al., 2002; Delecker et al., 2002). Similarly, the hepatoprotective role of silymarin on CCl4-induced liver damage has also been investigated earlier (Balderas-Renteria et al., 2007; Jain et al., 2008). However, to the best of our knowledge no report is available till date on the impact of lornit or silymarin on renal oxidative stress and thyroid metabolism; although thyroid hormones regulate almost all body functions (Ganong, 2005) and chronic medication with some drugs may result in altered levels of thyroid hormones (Vigersky et al., 2006; Isidro et al., 2007).

With this concept the present study was performed to ascertain the safe nature of lornit and silymarin in CCl4-induced hepatotoxic animals with particular reference to thyroid functions and tissue lipid peroxidation (LPO), considering laboratory mouse as working model. We also investigated the alterations in serum glucose and insulin levels; aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities and in endogenous antioxidants such as in the activities of superoxide dismutase (SOD), catalase (CAT) and in reduced glutathione (GSH) content, all being related to thyroid functions (Goel et al., 1994; Maiti and Kar, 1998; Kar and Panda, 2005; Jatwa and Kar, 2006a, b; Jatwa and Kar, 2007; Jatwa et al., 2007; Panda and Kar, 2007). As women are known to be more prone to thyroid abnormalities (Fry, 1993; Bülow et al., 2006), for the present investigation only female animals were considered.

MATERIALS AND METHODS

Drugs and Chemicals

The test drugs L-ornithine-L-aspartate (lornit®, Sun Pharma Co., India) and silymarin (Silybon®, Micro Labs. Co, India) were purchased from a registered local medical store, while dithiothreitol (DTT), CCl4, L-thyroxine (L-T4) and 2-thiobarbituric acid (TBA) were from Sigma Chemicals Co. Ltd. St. Louis, USA. Pyrogallol, hydrogen peroxide, diethylene triamine penta acetic acid, sodium dodecyl sulphate, ethylene diamine tetra acetic acid (EDTA) and sulphuric acid were purchased from E. Merk Ltd, Mumbai, India. Radioimmunoassay (RIA) kits, for the estimation of different hormones were obtained from Bhabha Atomic Research Centre (BARC), Mumbai, India. All other chemicals were of reagent grade and purchased from Loba Chemie, Mumbai, India.

Animals

Colony bred adult Swiss albino female mice, weighing 30 ± 2 g, were acclimated for a week in a light (14 h light: 10 h dark cycle) and temperature (23 ± 2 °C) controlled room with the provision of laboratory feed (Gold Mohur feed, Hindustan Lever Ltd., Mumbai, India) and water ad libitum.

Experimental design

Forty-two healthy mice were divided into six groups of seven each. Animals of group 1 receiving the vehicle, vegetable oil
(0.1 ml/animal, p.o.) served as control, while those of group 2, 3 and 4 received CCl₄ (2.0 gm/kg, p.o, mixed with vegetable oil at 1:1 ratio) twice a week (Wang et al., 1997; He et al., 2006; Balderas-Renteria et al., 2007) to induce liver damage. After 24 hours of CCl₄ administration animals of group 1 and 2 received vehicle, distilled water (0.1 ml/animal/day, p.o) and those of group 3 and 4 received lornit (200 mg/kg/day, p.o., Maneesh and Jayalekshmi, 2005) or silymarin (100mg/kg/day, p.o., Lee et al., 2007) respectively for 14 days, while animals of group 5 and 6 were administered only with equivalent amount of lornit and silymarin respectively. Drug or vehicle administration was done by gastric intubation method between 1000 and 1100 h of the day to avoid circadian variation, if any.

Animals were maintained as per the guidelines laid down by departmental Ethical Committee for Handling and Maintenance for Experimental Animals and the Committee for the Purpose of Control and Supervision on Experiments in Animals (CPCSEA), Ministry of Environment and Forests, Government of India.

Preparation of serum and tissue samples

On the day of termination (15th day), over-night fasted animals were killed after exposing them to mild ether anesthesia. Blood from each animal was collected and serum was isolated for the estimation of different biochemical and hormonal parameters. After exsanguinations, both the kidneys and liver were removed, quickly freed from blood clots and washed thoroughly with phosphate buffered saline (PBS, 0.1 M, pH 7.4), weighed and processed for the estimations of LPO, SOD and CAT activities and GSH and protein contents.

Assay of thyroid hormones

Total circulating T₃ and T₄ were estimated by RIA in serum samples following the protocols provided in the kits as routinely followed in our laboratory (Jatwa and Kar, 2006a; Jatwa and Kar, 2007; Jatwa et al., 2007; Panda and Kar, 2007). In brief, RIA was performed using tris hydroxymethyl amino methane buffer (0.14 M, containing 0.1 % gelatin; pH 8.6). The antisera, specific hormone standards, radio labeled hormones (I¹²⁵ T₄ and I¹²⁵ T₃) and the control sera were reconstituted with assay buffer,double distilled water. The reaction mixture comprised of standard/sample, buffer, radio labeled hormone and the respective antibody was incubated at 37 °C (30 min. for T₄ and 45 min. for T₃). Incubation was terminated by the addition of polyethylene glycol. Tubes were then centrifuged at 2000 X g for 20 min. After decanting the supernatant, traces of liquid were removed with the help of filter paper wicks without disturbing the precipitate. Finally the tubes were subjected to radioactivity counting for one minute (CPM) using an I¹²⁵ gamma counter. A set of quality control sera was also used with each assay.

Hormone assay of insulin

Assay of total serum insulin was also done following the protocol provided in RIA kit as routinely followed in our laboratory (Jatwa and Kar, 2006a; Jatwa and Kar, 2007; Jatwa et al., 2007). In brief, 200 μl of assay buffer and 100 μl of serum sample/standard were mixed and then 100 μl of primary antibodies (anti-porcine guinea pig IgG) were added and the mixture was incubated at 4 °C for overnight. Following the incubation, 100 μl of I¹²⁵-labeled insulin was added. After 3 hours of incubation at room temperature, 100 μl of secondary antibodies (anti-guinea pig-rabbit IgG) were added followed by addition of 1 ml polyethylene glycol. After gentle mixing, tubes were incubated at room temperature for 20 min and then centrifuged at 1500 X g for 20 min at room temperature. After decanting the supernatant, traces of liquid were removed with the help of filter paper wicks without disturbing the precipitate. Finally tubes were subjected to radioactivity counting for one minute (CPM) using an I¹²⁵ gamma counter. A set of quality control sera of mice was also used with each assay.
Study of hepatic 5'DI activity

For the evaluation of hepatic 5'DI enzyme activity, an established method (Kahl et al., 1987) was followed as commonly used in our laboratory (Maiti and Kar, 1998; Jatwa and Kar, 2007; Panda and Kar, 2007). In brief, the liver was homogenized in 3 volumes of ice-cold phosphate buffer (0.15 M, pH 7.4) containing 5 mM EDTA. The homogenate was centrifuged at 2000 X g for 30 min at 4 °C, then the supernatant was incubated with assay buffer, L-T4 (4 μM) and DTT for an hour at 37 °C. Finally the incubation was terminated with the addition of absolute ethanol and the estimation of T3 was done using RIA.

Estimations of ALT, AST and ALP activities

For the estimation of ALT and AST activities in serum samples, commercially available enzymatic kits, based on the reaction of 2, 4 dinitro phenyl hydrazine with pyruvate and/or oxaloacetate to yield a brown colored complex in alkaline medium were used (Reitman and Frankel, 1957). Serum ALP activity was evaluated using the spectrophotometric method of King (1965), as followed earlier in our laboratory (Jatwa and Kar, 2006b; Jatwa et al., 2007).

Serum glucose estimation

Fasting serum glucose concentration was estimated by glucose oxidase/peroxidase method of Trinder (1969), where 4-aminoantipyrine and phenol react with glucose to yield a red colored complex (Jatwa and Kar, 2007; Panda and Kar, 2007).

Biochemical estimations of LPO and GSH content

For the evaluation of LPO, the liver and kidney tissues were homogenized in 10 % (w/v) ice-cold phosphate buffered saline (0.1M, pH 7.4), centrifuged at 2,000 X g for 30 min and the supernatant was used for the assay (Ohkawa et al., 1979; Jatwa and Kar, 2006a, b; Jatwa and Kar, 2007; Jatwa et al., 2007; Panda and Kar, 2007). In brief, LPO was determined by the reaction of 2-thiobarbituric acid with malondialdehyde (MDA), one of the major products formed by peroxidation of lipids, in acidic medium. Amount of MDA was measured by taking the absorbance at 532 nm (extinction coefficient, E =1.56 x10³), using a Shimadzu UV-1700 spectrophotometer. While tissue reduced glutathione content was measured by taking the absorbance of the product formed by the reaction of Ellman’s reagent with GSH at 412 nm (Extinction coefficient, E= 1.36x10⁴) following the method of Ellman (1959), as done earlier in our laboratory (Jatwa and Kar, 2007; Jatwa et al., 2007).

Estimations of SOD and CAT activities and protein content

The endogenous SOD activity was determined using the pyrogallol autoxidation inhibition assay following the protocol of Marklund and Marklund (1974). The rate of autoxidation was determined by recording the increase in the absorption at 420 nm (Jatwa and Kar, 2006a, b; Jatwa and Kar, 2007; Jatwa et al., 2007; Panda and Kar, 2007). CAT activity was estimated by considering the method of Aebi (1983), based on the estimation of amount of hydrogen peroxide decomposed as routinely done in our laboratory (Jatwa and Kar, 2006a, b; Jatwa et al., 2007; Panda and Kar, 2007). Tissue protein estimation was done by the routine method of Lowry et al. (1951) using bovine serum albumin as standard.

Statistical analysis

Data are expressed as mean ± S.E.M. For statistical evaluation of the data, analysis of variance (ANOVA) and the Student’s t-test were used.
RESULTS

Effects on LPO and antioxidants

Administration of CCl₄ to mice on one hand increased hepatic and renal LPO (Fig. 1), on the other hand it decreased GSH, SOD, and CAT activities. While treatment with either lornit or silymarin to CCl₄ intoxicated animals reduced the LPO, there was a significant increase in the activities of SOD, CAT and GSH. In normal animals also both the drugs reduced tissue LPO with a significant increase in these three antioxidants (Table 1).

Effects on serum thyroid hormones and on hepatic 5’DI enzyme activity

A significant decrease in serum T₃ concentration and hepatic 5’DI enzyme activity was observed following CCl₄ administration. However, treatment with either lornit or silymarin reversed these abnormalities as both drugs increased 5’DI activity and serum T₃ concentration (Fig. 2). No significant alteration in serum T₄ level was noticed.

Figure 1: Effects of lornit or silymarin on the changes in hepatic and renal LPO (nM MDA formed / mg protein / hr) in CCl₄-induced hepatotoxic and control female mice. Each vertical bar represents the mean ± S.E.M. (n=7). ***, P < 0.001; **, P < 0.01 as compared to the respective control values and ***, P < 0.001 as compared to the respective values of the CCl₄-treated group.

Figure 2: Effects of lornit or silymarin on the changes in concentrations of serum T₃ and T₄ (ng/ml) and hepatic 5’DI (ng of T₃ generated/mg protein/hr) in CCl₄-induced hepatotoxic and normal female mice. Each vertical bar represents the mean ± S.E.M. (n=7). ***, P < 0.001 as compared to the respective control values and ***, P < 0.001 as compared to the respective values of the CCl₄-treated group.
Table 1: Effect of Lornit (200 mg/kg/day, p.o.) or Silymarin (100 mg/kg/day, p.o.) administration for 14 days on the activities of hepatic and renal SOD (U/mg protein) and CAT (μM H₂O₂ decomposed/min/mg protein) and GSH content (μM GSH/mg protein) on control and CCl₄ (2.0 g/kg, twice a week) treated female mice.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>CCl₄</th>
<th>CCl₄ + Lornit</th>
<th>CCl₄ + silymarin</th>
<th>Lornit</th>
<th>Silymarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD</td>
<td>2.53</td>
<td>1.05***</td>
<td>3.65***</td>
<td>3.93***</td>
<td>3.68***</td>
<td>3.10***</td>
</tr>
<tr>
<td></td>
<td>±0.10</td>
<td>±0.09</td>
<td>±0.12</td>
<td>±0.13</td>
<td>±0.18</td>
<td>±0.07</td>
</tr>
<tr>
<td>CAT</td>
<td>42.79</td>
<td>27.62***</td>
<td>48.50***</td>
<td>42.61***</td>
<td>49.22*</td>
<td>50.64*</td>
</tr>
<tr>
<td></td>
<td>±2.12</td>
<td>±1.01</td>
<td>±2.13</td>
<td>±2.21</td>
<td>±2.01</td>
<td>±2.63</td>
</tr>
<tr>
<td>GSH</td>
<td>3.50</td>
<td>2.07***</td>
<td>4.23***</td>
<td>5.07***</td>
<td>4.09*</td>
<td>4.72*</td>
</tr>
<tr>
<td></td>
<td>±0.21</td>
<td>±0.10</td>
<td>±0.31</td>
<td>±0.42</td>
<td>±0.42</td>
<td>±0.41</td>
</tr>
<tr>
<td>Renal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD</td>
<td>4.72</td>
<td>3.36**</td>
<td>5.50***</td>
<td>5.21***</td>
<td>7.10**</td>
<td>8.12***</td>
</tr>
<tr>
<td></td>
<td>±0.32</td>
<td>±0.22</td>
<td>±0.35</td>
<td>±0.36</td>
<td>±0.6</td>
<td>±0.7</td>
</tr>
<tr>
<td>CAT</td>
<td>40.31</td>
<td>30.72**</td>
<td>42.61**</td>
<td>43.66**</td>
<td>49.06*</td>
<td>49.05*</td>
</tr>
<tr>
<td></td>
<td>±2.08</td>
<td>±2.04</td>
<td>±2.48</td>
<td>±2.61</td>
<td>±3.01</td>
<td>±2.01</td>
</tr>
<tr>
<td>GSH</td>
<td>5.73</td>
<td>4.53*</td>
<td>8.80***</td>
<td>8.63***</td>
<td>8.81***</td>
<td>8.13***</td>
</tr>
<tr>
<td></td>
<td>±0.28</td>
<td>±0.31</td>
<td>±0.39</td>
<td>±0.51</td>
<td>±0.29</td>
<td>±0.31</td>
</tr>
</tbody>
</table>

Data are mean ± S.E.M. (n=7). ***, P < 0.001 and **, P < 0.01 as compared to the respective values of CCl₄ treated group. ***, P < 0.001; **, P < 0.01 and *, P < 0.05 as compared to the respective control values.

Serum ALT, AST and ALP activities and on the concentration of insulin and glucose

CCl₄ administration significantly increased serum ALT, AST and ALP activities as well as insulin and glucose concentrations. However, either lornit or silymarin administration to CCl₄ treated animals reversed all these changes bringing down the values to nearly normal levels (Table 2).

DISCUSSION

Results revealed that administration of CCl₄ to mice increased the LPO in both hepatic and renal tissues; serum AST, ALT and ALP activities; fasting glucose and insulin concentrations, but lowered serum level of T₃ and hepatic 5’DI activity, indicating a peroxidative, hyperglycemic and hypothyroidic conditions. While the CCl₄ induced alterations in most of these parameters including hypothyroidism, hyperinsulinemia and increase in hepatic LPO are in accordance with the earlier observations made by some other workers (Meyer-Alber et al., 1992; Goel et al., 1994; Castilla-Cortazar et al., 1997), practically nothing was known in relation to hepatic activity of 5’DI, the enzyme responsible for major amount of T₃ production (Ganong, 1995) and on renal peroxidative system which have been evaluated in the present study.
Table 2: Effect of Lornit (200 mg/kg/day, p.o.) or Silymarin (100 mg/kg/day, p.o.) administration for 14 days on the activities of serum AST (U/l); ALT (U/l) and ALP (KA units/l) and insulin (IU/l) and glucose (mg/dl) concentrations in normal and CCl₄ (2.0 g/kg, twice a week) treated female mice.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>CCl₄</th>
<th>CCl₄ + Lornit</th>
<th>CCl₄ + Silymarin</th>
<th>Lornit</th>
<th>Silymarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>38.25±1.57</td>
<td>120.2***</td>
<td>44.0***</td>
<td>45.12***</td>
<td>40.2±2.11</td>
<td>41.0±2.03</td>
</tr>
<tr>
<td>AST</td>
<td>13.80±0.61</td>
<td>30.8***</td>
<td>15.0***</td>
<td>15.80***</td>
<td>14.80±0.80</td>
<td>15.0±0.94</td>
</tr>
<tr>
<td>ALP</td>
<td>15.69±0.98</td>
<td>19.74*</td>
<td>10.18+++</td>
<td>11.07+++</td>
<td>12.94±1.27</td>
<td>16.46±0.81</td>
</tr>
<tr>
<td>Insulin</td>
<td>21.0±0.93</td>
<td>42.0***</td>
<td>20.0+++</td>
<td>18.75+++</td>
<td>20.33±1.12</td>
<td>20.25±1.0</td>
</tr>
<tr>
<td>Glucose</td>
<td>84.84±2.89</td>
<td>118.34***</td>
<td>90.34***</td>
<td>93.75+++</td>
<td>80.83±3.89</td>
<td>79.83±4.89</td>
</tr>
</tbody>
</table>

Data are mean ± S.E.M. (n=7). ***, P < 0.001 as compared to the respective values of CCl₄ treated group. **, P < 0.001 and *, P < 0.05 as compared to the respective control values.

While carbon tetrachloride induced increase in hepatic LPO, observed in the present study indicating a condition of liver damage is well documented in experimental models (Weber et al., 2003; Yamazaki et al., 2005; He et al., 2006; Lee et al., 2007; Tu et al., 2007), the additional findings on the increased levels of serum ALT, AST and ALP activities in CCl₄ treated group further corroborated its hepatotoxic nature. This could be an outcome of loss of membrane integrity and increased oxidative stress as suggested earlier (He et al., 2006; Lee et al., 2007). It is well understood that CCl₄ is activated by phase 1-cytochrome P450 enzymes to trichloromethyl (CCl₃) free radicals (Weber et al., 2003; Aleksunes et al., 2005) which initiate a chain of reactions by abstracting hydrogen ion from nearby polyunsaturated fatty acids (PUFA) and result in increased production of thiobarbituric acid reactive substances (TBARS), the major products of lipid peroxidation (He et al., 2006). In fact, peroxidation of lipids, particularly those containing PUFA can dramatically change the properties of biological membranes and some times result in severe cell damage (Weber et al., 2003; Aleksunes et al., 2005). Therefore, in the present investigation, elevation in hepatic LPO could be an outcome of CCl₄-induced cellular damage. It could also be due to the decreased activities of endogenous antioxidants such as SOD, CAT and GSH (Yamazaki et al., 2005; He et al., 2006; Lee et al., 2007) as all these have an inverse relationship with LPO.

The interesting findings are that the administration of either of the test drugs to CCl₄ treated animals reversed most of these adverse effects including CCl₄ induced hypothyroidism and oxidative stress. To the best of our knowledge, for the first time we report the impact of lornit and silymarin therapy on thyroid metabolism of an animal model. Therefore, our findings can be compared to that of some recent clinical reports suggesting an altered thyroid hormone metabolism due to chronic medication with some other drugs (Vigersky et al., 2006; Isidro et al., 2007). In fact, lornit administration stimulated the hepatic 5'DI activity and the serum T₃ level, but reduced the tissue LPO and serum glucose level. While
silymarin was earlier known to be effective against chemically induced tissue LPO, hyperinsulinemia and hyperglycemia (Soto et al., 2004; Huseini et al., 2006), practically nothing was reported on the impact of lornit on these aspects. Interestingly, simultaneous administration of either lornit or silymarin to these animals reversed the CCl\textsubscript{4}-induced hepatic LPO. These observations are somewhat similar to the earlier reports which too indicated the amelioration of chemical-induced tissue LPO and oxidative stress following the administration of test hepatoprotective drugs (Maneesh and Jayalekshmi, 2005; Mansour et al., 2006; Poo et al., 2006; Lee et al., 2007; Upadhyay et al., 2007). The tissue protective nature of both the evaluated drugs was further supported by the increased activities of endogenous antioxidants such as SOD, CAT and GSH, as also observed by some other workers (Mansour et al., 2006; Balderas-Renteria et al., 2007). However, lornit exhibited a better efficacy in the reduction of CCl\textsubscript{4}-induced hepatic LPO (60.13 %) than that of silymarin (55.58 %) and some what similar inhibition was observed when the tested drugs were administered to normal healthy animals (62.12 % and 36.86 % for lornit and silymarin, respectively).

Observations on fasting serum glucose following CCl\textsubscript{4} administration indicated a hyperglycemic condition as reported by earlier workers (Meyer-Alber et al., 1992; Castilla-Cortazar et al., 1997). However, CCl\textsubscript{4} also elevated serum insulin concentration, indicating a condition of insulin resistance. This observed elevation in fasting serum glucose (39.48 %) could be an outcome of CCl\textsubscript{4}-induced decrease in GLUT2 mediated absorption of circulating sugar as suggested earlier (Meyer-Alber et al., 1992; Castilla-Cortazar et al., 1997). Interestingly, simultaneous administration of either lornit or silymarin and CCl\textsubscript{4} reversed these abnormalities suggesting the potency of both the test drugs, in the amelioration of CCl\textsubscript{4}-induced hyperglycemia and insulin resistance. Of course, the percent decrease of fasting serum glucose in case of lornit was little higher (23.66) as compared to silymarin (19.08) suggesting a relatively better efficacy of the former one over the latter drug in ameliorating hyperglycemia. These favorable effects of both the test drugs on glucose metabolism could be the outcome of a decrease in oxidative stress (discussed latter) on hepatic tissues, which might have facilitated the glycogen synthesis and reduced insulin resistance (Szkudelski, 2001).

For the first time an increase in renal LPO (23.62 %) following CCl\textsubscript{4} administration was also observed, which was nearly normalized by the administration of lornit or silymarin, suggesting the beneficial role of the test drugs with respect to renal functions, too. This kidney protective effect could either be the direct free radical scavenging activity of two drugs or could indirectly be the result of an elevation in the levels of endogenous antioxidants such as SOD, CAT and GSH, those were reduced following CCl\textsubscript{4} treatment.

With respect to the changes in the level of thyroid hormones, there was a decrease in T\textsubscript{3} concentration following CCl\textsubscript{4} administration as reported by earlier workers (Goel et al., 1994), which was reversed on simultaneous administration with either lornit or silymarin. It is quite possible that this CCl\textsubscript{4} induced decrease in thyroid function is an outcome of CCl\textsubscript{4}-induced hepatotoxicity, as out of the two major circulating thyroid hormones, T\textsubscript{4} is synthesized only in thyroid gland, while the major amount of T\textsubscript{3} (85-90 %) is produced by the mono-deiodination of T\textsubscript{4}, primarily in hepatic and renal tissues with the help of enzyme 5'DI (Ganong, 2005). This fact was further supported by the decreased hepatic 5'DI enzyme activity (47.22 %) in the animals of CCl\textsubscript{4} treated group, suggesting that chronic administration of hepatotoxic chemicals may reduce hepatic 5'DI enzyme activity (Maiti and Kar, 1998). On the other hand, lornit or silymarin administration to CCl\textsubscript{4}-induced hepatotoxic animals resulted in the reversal in the serum T\textsubscript{3} concentration. This was further supported by increased 5'DI enzyme activity in hepatic tissues (94.73 % and 100 % for lornit and silymarin, respectively). As in present study, following lornit
or silymarin administration only the level of
T₃ and 5’DI activity were increased, it
seems that the test drugs regulate thyroid
function only at the level of peripheral con-
version of T₄ to T₃. The possible mecha-
nism could be that the tissue protective ef-
fects of both the test drugs might have re-
duced the oxidative stress and increased the
T₃, as suggested earlier (Maiti and Kar, 1998; Kar and Panda, 2005;
Jatwa and Kar, 2007).

In summary, both lornit and silymarin
appear to have the potential to protect he-
patic and renal toxicity induced by xenobi-
otics, with an additional benefit of amelio-
rating hyperglycemia and thyroid dysfunc-
tion. It is further suggested that both the test
drugs may prove to be safe for chronic
medication with particular reference to ant-
ioxidant defense system and thyroid func-
tions. However, lornit appears to be more
potent than silymarin in regulating the tis-
sue toxicity, both in liver and kidney.

Acknowledgements: Financial support
from the Council of Scientific and Indus-
trial Research (CSIR), New Delhi, India for
a Senior Research Fellowship (SRF) to R.
Jatwa is greatly acknowledged. We also
thank Dr. S. Panda, Mr. H.S. Parmar and
Ms. Y. Dixit for some help.

REFERENCES
Aebi HE. Catalase. In: Bergmeyer HU (ed).
Methods in enzymatic analysis (pp 276-86).

Aleksunes LM, Slitt AM, Cherrington NJ,
Thiodeau MS, Klaassen CD, Manautou JE.
Differential expression of mouse hepatic
transporter genes in response to acetamino-
phen and carbon tetrachloride. Toxicol Sci
2005;83:44-52.

Balderas-Renteria I, Camacho-Corona Mdel
R, Carranza-Rosales P, Lozano-Garza HG,
Castillo-Nava D, Alvarez-Mendoza. Hepa-

toprotective effect of Leucophyllum frutes-
cens on Wistar albino rats intoxicated with
carbon tetrachloride. Ann Hepatol 2007;6:
251-4.

Bülow Pedersen I, Laurberg P, Knudsen N,
Jørgensen T, Perrild H, Ovesen L
Rasmussen LB. Lack of association be-
tween thyroid autoantibodies and parity in a
population study argues against microchi-
merism as a trigger of thyroid autoimmu-

Castilla-Cortazar I, Garcia M, Muguerza B,
Quiroga J, Perez R, Santidrian S, Prieto J.
Hepatoprotective effects of insulin-like
growth factor I in rats with carbon tetra-
chloride-induced cirrhosis. Gastroentero-
logy 1997;113:1682-91.

Clawson GA. Mechanisms of carbon tetra-
chloride hepatotoxicity. Pathol Immunopa-

Delcker A, Turowski B, Mihm U, Raab P,
Rusch O, Pilatus U, Zeuzem S, Zanella FE.
Proton MR spectroscopy of neurometabo-
lites in hepatic encephalopathy during L-
orinthine-L-aspartate treatment--results of a
pilot study. Metab Brain Dis 2002;17:103-
11.

Ellman GL. Tissue sulfhydryl groups. Arch

Fry C. Thyroid related diseases and their

Ganong WF. Review of medical physiol-

Gebhardt R, Beckers G, Gaunitz F, Haupt
W, Jonitzia D, Klein S, Scheja L. Treatment
of cirrhotic rats with L-orithine-L-aspar-
tate enhances urea synthesis and lowers se-
rum ammonia levels. J Pharmacol Exp Ther

