Data mining for the identification of metabolic syndrome status
DOI:
https://doi.org/10.17179/excli2017-911Keywords:
metabolic syndrome, health parameters, diabetes mellitus, cardiovascular diseases, data mining, QPHRAbstract
Metabolic syndrome (MS) is a condition associated with metabolic abnormalities that are characterized by central obesity (e.g. waist circumference or body mass index), hypertension (e.g. systolic or diastolic blood pressure), hyperglycemia (e.g. fasting plasma glucose) and dyslipidemia (e.g. triglyceride and high-density lipoprotein cholesterol). It is also associated with the development of diabetes mellitus (DM) type 2 and cardiovascular disease (CVD). Therefore, the rapid identification of MS is required to prevent the occurrence of such diseases. Herein, we review the utilization of data mining approaches for MS identification. Furthermore, the concept of quantitative population-health relationship (QPHR) is also presented, which can be defined as the elucidation/understanding of the relationship that exists between health parameters and health status. The QPHR modeling uses data mining techniques such as artificial neural network (ANN), support vector machine (SVM), principal component analysis (PCA), decision tree (DT), random forest (RF) and association analysis (AA) for modeling and construction of predictive models for MS characterization. The DT method has been found to outperform other data mining techniques in the identification of MS status. Moreover, the AA technique has proved useful in the discovery of in-depth as well as frequently occurring health parameters that can be used for revealing the rules of MS development. This review presents the potential benefits on the applications of data mining as a rapid identification tool for classifying MS.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).