Towards understanding aromatase inhibitory activity via QSAR modeling
DOI:
https://doi.org/10.17179/excli2018-1417Keywords:
aromatase, aromatase inhibitors, breast cancer, estrogen, QSAR, structure-activity relationship, data miningAbstract
Aromatase is a rate-limiting enzyme for estrogen biosynthesis that is overproduced in breast cancer tissue. To block the growth of breast tumors, aromatase inhibitors (AIs) are employed to bind and inhibit aromatase in order to lower the amount of estrogen produced in the body. Although a number of synthetic aromatase inhibitors have been released for clinical use in the treatment of hormone-receptor positive breast cancer, these inhibitors may lead to undesirable side effects (e.g. increased rash, diarrhea and vomiting; effects on the bone, brain and heart) and therefore, the search for novel AIs continues. Over the past decades, there has been an intense effort in employing medicinal chemistry and quantitative structure-activity relationship (QSAR) to shed light on the mechanistic basis of aromatase inhibition. To the best of our knowledge, this article constitutes the first comprehensive review of all QSAR studies of both steroidal and non-steroidal AIs that have been published in the field. Herein, we summarize the experimental setup of these studies as well as summarizing the key features that are pertinent for robust aromatase inhibition.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).