The role of CA1 CB1 receptors on lithium-induced spatial memory impairment in rats
DOI:
https://doi.org/10.17179/excli2018-1511Keywords:
ACPA, AM251, lithium, spatial memory, CA1, ratsAbstract
Lithium, a glycogen synthase kinase-3β (GSK-3β) inhibitor, prevents cannabinoid withdrawal syndrome, but there is limited data exploring the interaction between lithium and cannabinoid system on memory processes. The present study aimed to test the interaction between dorsal hippocampal (CA1 region) cannabinoid system and lithium on spatial memory in rats. Spatial memory was assessed in Morris Water Maze (MWM) apparatus by a single training session of eight trials. The results showed that pre-training intra-CA1 microinjection of ACPA, the cannabinoid type 1 receptor (CB1r) agonist, at doses of 0.001, 0.01 or 1 µg/rat, or AM251, the cannabinoid type 1 receptor (CB1r) antagonist, at doses of 1, 10 or 100 ng/rat, increased escape latency and traveled distance to the platform, suggesting a spatial learning impairment, whereas intraperitoneal administration of lithium (0.5, 1 or 5 mg/kg) had no effect on spatial learning. Also, rats that received lithium plus a lower dose of ACPA (0.001 µg/rat) or AM251 (1 ng/rat) had successful performance in the MWM. In the probe test, the results showed that pre-training administration of lithium (5 mg/kg) and ACPA (0.01 or 1 µg/rat) but not AM251 (at all doses used) impaired spatial memory retrieval. Also, lower dose of ACPA (0.001 µg/rat) or AM251 (1 ng/rat) potentiated the effect of ineffective doses of lithium (0.5 and 1 mg/kg) on spatial memory retrieval, while restored the effect of effective dose of lithium (5 mg/kg). In conclusion, cannabinoids may have a dual effect on lithium-induced spatial memory impairment in rats.
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).