AI illuminates paths in oral cancer
transformative insights, diagnostic precision, and personalized strategies
DOI:
https://doi.org/10.17179/excli2024-7253Keywords:
oral squamous cell carcinoma, machine learning, convolutional neural network, computed tomographyAbstract
Oral cancer retains one of the lowest survival rates worldwide, despite recent therapeutic advancements signifying a tenacious challenge in healthcare. Artificial intelligence exhibits noteworthy potential in escalating diagnostic and treatment procedures, offering promising advancements in healthcare. This review entails the traditional imaging techniques for the oral cancer treatment. The role of artificial intelligence in prognosis of oral cancer including predictive modeling, identification of prognostic factors and risk stratification also discussed significantly in this review. The review also encompasses the utilization of artificial intelligence such as automated image analysis, computer-aided detection and diagnosis integration of machine learning algorithms for oral cancer diagnosis and treatment. The customizing treatment approaches for oral cancer through artificial intelligence based personalized medicine is also part of this review.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Devesh U. Kapoor, Pushpendra Kumar Saini, Narendra Sharma, Ankul Singh, Bhupendra G. Prajapati, Gehan M. Elossaily, Summya Rashid
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).