A novel phosphodiesterase target as a therapeutic approach: inhibiting DEN-induced hepatocellular carcinoma progression
DOI:
https://doi.org/10.17179/excli2024-7941Keywords:
HCC, diethylnitrosamine (DEN), phosphodiesterase (PDE) inhibitors, PDE5, cGMP-PKG pathway, JNK pathwaytherapy, MAPK pathway, tumor microenvironmentAbstract
Hepatocellular Carcinoma (HCC) is one of the most common and fatal types of liver cancer worldwide; in this sense, Diethylnitrosamine (DEN) has been established as a potent carcinogen affecting the development and progression of this disease. The present work focused on determining whether phosphodiesterase (PDE) enzymes, especially PDE5, may serve as targets in the therapeutic treatment of DEN-induced HCC. PDE5 inhibitors, widely used as therapeutic drugs for cardiovascular diseases and erectile dysfunction, have recently been found to be promising in preclinical cancer models through the modulation of key signaling pathways implicated in the progression of tumors, such as the cGMP-PKG, JNK, and MAPK pathways. These pathways are very important for cell proliferation, apoptosis and metastasis, and their dysregulation contributes to the aggressive nature of HCC. This study assessed the potential of PDE5 inhibitors to suppress proliferation, induce apoptosis, and alter the tumor microenvironment, thus potentially improving standard chemotherapy and immunotherapy interventions. By inhibiting certain PDE isoforms with these drugs, an anticancer response might occur as part of a complex mechanism that acts on both cancer cells and the microenvironment favorable for tumor growth. A preliminary review indicated that PDE inhibitors may be a promising therapeutic approach for overcoming some of the shortcomings of current treatments, particularly the development of resistance and the toxic effects of these treatments. Additional clinical investigations are necessary to determine the safety profile, appropriate amount of Osage, and long-term efficacy of these agents in the treatment of HCC, particularly in DEN-induced animal models. This study contributes to the expanding body of evidence supporting the use of PDE inhibitors in cancer treatment.

Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Anil Kumar, Dharmendra Singh Rajput, Mandeep Kumar Gupta, Vivek Kumar, Harpreet Singh, Arun Kumar Mishra, Shivani Chopra, Hitesh Chopra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).