Targeting metabolic vulnerabilities in breast cancer cells by combining PEDF and doxorubicin: pathway insights from GC/MS-based metabolomics
DOI:
https://doi.org/10.17179/excli2025-8508Keywords:
breast cancer, PEDF, doxorubicin, GC/MS, metabolomics, metabolic profilingAbstract
Breast cancer (BC), characterised by its diverse subtypes and molecular heterogeneity, remains a major challenge in oncology. Despite advances in chemotherapy, such as doxorubicin (Dox), limitations persist due to toxicity and drug resistance. Pigment epithelium-derived factor (PEDF) is a multifunctional protein with unique anti-tumour properties. The aim here was to elucidate metabolic reprogramming in human BC cell lines using a metabolomics approach. Untargeted gas chromatography-quadrupole mass spectrometry (GC/Q-MS) was employed to identify the metabolic alterations in BC cell lines MCF-7 (ER-positive) and MDA-MB-231 (TNBC) following treatment with PEDF, Dox, and their combination (Dox+PEDF) in comparison to untreated controls. Statistical models were employed using a combination of multivariate and univariate analyses, including partial least squares discriminant analysis (PLS-DA) and one-way ANOVA, applied by MetaboAnalyst and SIMCA software. To address the potential for multiple-testing errors, false discovery rate (FDR)-adjusted p-values were calculated to ensure robust statistical reliability. The overall analysis revealed significant metabolic alterations across the treatment groups, with distinct patterns emerging in carbohydrate, lipid, and amino acid metabolisms. In MCF-7 cells, PEDF combined with Dox significantly decreased cystine levels and modulated aspartic acid and lipid-related metabolites, indicating potential shifts in redox homeostasis and membrane composition. In MDA-MB-231 cells, the combination treatment significantly reduced glucose-6-phosphate and lactate levels, suggesting remodeling of glycolytic flux and redox balance. Furthermore, the combination of PEDF and Dox influenced amino acid and lipid metabolism. Pathway enrichment and correlation analyses revealed significant perturbations in glutathione metabolism, energy pathways, and lipid signaling, with notable differences between the two cell lines. Combining Dox and PEDF induced coordinated changes in metabolic networks, suggesting synergistic and antagonistic mechanisms that impact multiple biochemical pathways. These findings underline the importance of combining PEDF with chemotherapy to improve treatment outcomes in BC.
Downloads
Additional Files
Published
How to Cite
License
Copyright (c) 2025 Raziyeh Abooshahab, Hani Al-Salami, Crispin R. Dass

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).
