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ABSTRACT 

Osteoanabolic agents, or drugs that promote bone formation, have gained considerable attention for osteoporosis 

management due to their curative and preventive potentials. Sphingosine-1-phosphate receptor 2 (S1PR2) is an 

attractive drug target, in which its activation leads to osteogenesis-promoting effect. Nitrogen-containing heterocyclic 

scaffolds (i.e., quinoxaline and indole) are promising pharmacophores possessing diverse bioactivities and were 

reported as S1PR2 activators. Quantitative structure-activity relationship (QSAR) modeling is a computational 

approach well-known as a fundamental tool for facilitating successful drug development. This study demonstrates 

the discovery of new S1PR2 activators using computational-driven rational design. Herein, an original dataset of 

nitrogen-containing S1PR2 activators was collected from ChEMBL database. The retrieved dataset was separated 

into two datasets according to their core scaffolds (i.e., quinoxaline and indole). QSAR modeling was performed 

using multiple linear regression (MLR) algorithm to successfully obtain two models with good predictive performance. 

The constructed models also revealed key properties playing essential roles for potent S1PR2 activation, such as 

Van der Waals volume (R2v+ and E3v), mass (MATS5m and Km), electronegativity (H3e), and number of  

5-membered rings (nR05). Subsequently, the constructed models were further employed to guide rational design 

and predict S1PR2 activating effects of an additional set of 752 structurally modified compounds. Most of the 

modified compounds were predicted to have higher potency than their parents, and a set of promising potent newly 

designed compounds was highlighted. Additionally, drug-likeness prediction was performed to reveal that most 

of the newly designed compounds are druggable compounds with possibility for further development. 
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INTRODUCTION 

Aging drives many degenerative conditions 

and is the most concerning health issue globally 

(United Nations Department of Economic 

Social Affairs, 2021). Osteoporosis is a  

degenerative condition typically found among 

elders. It is initiated by an imbalanced bone 

remodeling leading to the loss of bone density 

and porous bone appearance with increased 

risk of fragility fractures (Akkawi and 

Zmerly, 2018; Ensrud and Crandall, 2017). 

Pharmacotherapeutics for osteoporosis are 

mainly aimed to increase bone mineral density 

either by preventing bone resorption (antire-

sorptive agents) or facilitating osteogenesis 

(osteoanabolic agents). The osteoanabolic 

agents have gained greater interest due to 

their healing-promoting effects (Kostenuik et 

al., 2023). Several classes of anti-osteoporotic 

drugs are clinically available (i.e., bisphospho-

nates, selective estrogen receptor modulators, 

sclerostin inhibitors, and receptor activator of 

nuclear factor kappa-β ligand inhibitors 

(Akkawi and Zmerly, 2018; Ensrud and 

Crandall, 2017; Tu et al., 2018). However, 

their adverse effects and complications are 

still concerning (Black et al., 2020; Gilbert et 

al., 2022; Wotton et al., 2019). Accordingly, 

the discovery of novel osteoanabolic agents for 

osteoporosis management is of great interest. 

Sphingosine-1-phosphate (S1P) plays 

crucial roles in regulating many biological 

systems including angiogenesis, inflammation, 

neurogenesis (Mendelson et al., 2014; Takuwa 

et al., 2012), osteogenesis (Cao et al., 2019; 

Sartawi et al., 2017), and bone remodeling 

(Grewe et al., 2022). Therefore, their receptors 

are attractive drug targets for several clinical 

indications (Baumruker et al., 2007; Yazdi et 

al., 2020). Among other subtypes, S1P receptor 

2 (S1PR2) was noted for its role in bone  

remodeling. An activation of S1PR2 was  

reported to induce the expression of a key 

transcriptional factor (RUNX2) playing a role 

in osteoblast differentiation (Higashi et al., 

2016; Sato et al., 2012), increase osteoblast 

differentiation markers at mRNA level 

(Matsuzaki et al., 2022), and improve bone 

structural parameters in several in vivo models 

(Matsuzaki et al., 2022; Weske et al., 2018, 

2019). Accordingly, targeting the activation 

of S1PR2 is a promising strategy for managing 

bone diseases. 

Nitrogen-based heterocyclic compounds 

(i.e., quinoxaline and indole) are promising 

pharmacophores for drug discovery due to 

their various bioactivities. Quinoxalines were 

reported as antimicrobial, anticancer, anti- 

inflammatory and antidepressant agents (Pereira 

et al., 2015). Similarly, indoles were noted for 

their anti-inflammatory, anticancer, antimi-

crobial, antidiabetic, and antioxidant activities 

(Sravanthi and Manju, 2016). Notably, these 

nitrogen-containing compounds were reported 

to take parts in bone remodeling via modulating 

the differentiations and functions of both  

osteoclast and osteoblast (Ha et al., 2021; Yu 

et al., 2015; Zhou et al., 2021). Therefore, 

these pharmacophores are attractive scaffolds 

for the discovery of new anti-osteoporotic 

drugs. 

Computational (in silico) approaches have 

been employed as facilitating tools in drug  

development for decades (Prachayasittikul et 

al., 2015) due to their benefits in reducing 

late-stage failures, increasing success rate, 

and saving time (Vemula et al., 2023). Quan-

titative Structure-Activity Relationship (QSAR) 

modeling is a computational method widely 

used to elucidate the relationships between 

chemical properties of the compounds and 

their biological activities (Nantasenamat et 

al., 2009; Roy et al., 2015b). Among others, 

the multiple linear regression (MLR) algorithm 

is well-known for its interpretable nature that 

suitably reveals informative knowledge for 

guiding the effective design of new derivatives. 

Successful QSAR-driven rational drug designs 

have been reported for diverse activities by 

our group (Phanus-umporn et al., 2020; 

Pingaew et al., 2022; Prachayasittikul et al., 

2017; Pratiwi et al., 2019; Worachartcheewan 

et al., 2020). Drug-likeness is one of the key 

properties determining successful drug devel-

opment, therefore, in silico drug-likeness  

prediction is widely included in the initial 

phases of development to improve the success 

rate (Ekins et al., 2023).  
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To date, QSAR studies regarding the 

S1PR modulating compounds are still limited. 

Herein, previously reported quinoxaline-based 

and indole-based S1PR2 activators (Pubchem, 

2004a, b, c) (Figure 1) were retrieved as input 

datasets for QSAR modeling using MLR  

algorithms. The constructed models were further 

applied to guide the design of new structurally  

 

modified compounds. Subsequently, the newly 

designed compounds were predicted for their 

S1PR2 activating effects as well as drug-

likeness. SAR analysis was also performed to 

reveal key beneficial knowledge. Finally, a set 

of promising novel compounds was highlighted 

for further potential development. 

 

 
Figure 1: Overview workflow of the study 
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MATERIALS AND METHODS 

Data collection 

An original set of quinoxaline- and indole-

based S1PR2 activators was obtained from 

the ChEMBL database (Mendez et al., 2018) 

and was curated (Fourches et al., 2010) by the 

following steps (i) removal of inorganic com-

pounds (i.e., salts and mixtures), (ii) structural 

validation and cleaning, (iii) normalization of 

specific chemotypes, (iv) deletion of duplicates, 

and (v) final checking to obtain the final curated 

data set containing 11 active compounds along 

with their bioactivity values, represented by 

the half maximal effective concentration 

(EC50) (Neubig et al., 2003). EC50 is a concen-

tration that increases the S1P activity by 

50 %. The EC50 values were converted into 

pEC50 values by taking the negative logarithm 

based 10 to normalize the data points. According 

to the compound’s core structure, the dataset 

was separately preprocessed into two final  

datasets (i.e., scaffold A = 6 quinoxaline-

based compounds and scaffold B = 5 indole-

based compounds), Figure 2. 

 

Geometry optimization 

Chemical structures of compounds in 

SMILES format were converted into MOL 

format using MarvinSketch (ChemAxon Ltd., 

2018). All structures were geometrically  

optimized to obtain the lowest energy con-

formers by density functional theory (DFT) 

computation with Becke’s three-parameter 

Lee–Yang–Parr hybrid functional (B3LYP) 
and 6-31g(d) basis set using Gaussian 09  

software (Frisch et al., 2009). The optimized 

structures were subsequently used as input 

files for descriptor calculation. 

 

Molecular descriptors calculation 

Molecular descriptors are numerical values 

used to represent characteristics of the com-

pounds in terms of connectivity, constitution, 

and physicochemical properties (Nantasenamat 

et al., 2009). A set of 13 quantum chemical 

descriptors was calculated using an in-house 

developed script (i.e., mean absolute atomic  

charge (Qm), molecular dipole moment (µ), 

electronegativity (χ), total energy  (ET), 

electron affinity (EA), ionization potential 

(IP), electron ionization (EI), highest occupied 

molecular orbital energy (HOMO), lowest  

unoccupied molecular orbital energy (LUMO), 

energy difference of HOMO  and LUMO  

(HOMO-LUMOgap), absolute hardness (η), 

softness (S), and electrophilicity (ω).  

Additionally, the optimized structures were 

used as input files for calculation of molecular  

descriptor using Dragon 5.5 software (Mauri 

et al., 2006) to obtain a set of 3,224 molecular 

descriptors, comprising 48 constitutional  

descriptors, 119 topological descriptors, 47 walk 

and path counts, 33 connectivity indices, 47 

information indices, 96 2D autocorrelations, 

107 edge adjacency indices, 64 Burden eigen-

values, 21 topological charge indices, 44  

eigenvalue-based indices, 41 Randic molecular 

profiles, 74 geometrical descriptors, 150 RDF 

descriptors, 160 3D-MoRSE descriptors, 99 

WHIM descriptors, 197 GETAWAY descriptors, 

154 functional group counts, 120 atom-centered 

fragments, 14 charge descriptors, 29 molecular 

properties, 780 2D binary fingerprints, and 

780 2D frequency fingerprints. 

 

Descriptor selection 

Descriptor selection is a process to select 

a set of informative descriptors from a large 

set of calculated descriptors to be used as final 

predictors. Correlation-based feature selection 

was initially performed to filter a set of  

descriptor variables that are highly correlated 

with bioactivity of the compounds. Pearson’s 

correlation coefficient (r) values for each pair 

of descriptor value and bioactivity value (pEC50) 

were calculated. Descriptors with |𝑟| ≥ 0.8 

were considered as highly correlated predictors 

and were selected for further selection process 

using stepwise MLR in PASW Statistics 18 

software (SPSS Inc, 2009) and M5 method in 

WEKA software (Frank et al., 2016) to obtain 

a final set of informative descriptors. Finally, 

the values of selected descriptors along with 

the pEC50 values were used to prepare final 

datasets for model construction.



EXCLI Journal 2024;23:818-832 – ISSN 1611-2156 

Received: March 26, 2024, accepted: April 17, 2024, published: May 27, 2024 

 

 

822 

 

 

Model construction 

Two final datasets were used as input files 

for construction of QSAR models by WEKA 

software 3.8.4 (Frank et al., 2016) using MLR 

algorithm. The MLR model represents a linear 

relationship between multiple descriptors (X 

variables) and bioactivity (Y variable) as 

shown in equation (1). 

𝑌 = 𝐵0 + ∑𝐵𝑛𝑋𝑛         (1) 

where Y is the pEC50 of compounds, B0 is 

the Y-intercept and Bn are the regression 

coefficients of descriptors (Xn). 

Data sampling and model validation 

The dataset was divided into training set 

and testing set by leave-one-out cross validation 

(LOO-CV). Since the datasets contain small 

samples with less than 50 compounds, the 

LOO-CV sampling method is reliable for 

model validation (Roy et al., 2015a). The 

training set is used to build the model 

whereas the testing set was used to validate 

the predictive performance of the built model. 

For each round, one sample was excluded 

from the whole dataset (N) to be used as a 

Figure 2: Chemical 
structures of  
quinoxaline-based 
(Scaffold A: 6 com-
pounds) and indole-
based (Scaffold B: 
5 compounds) acti-
vators. Experimental 
pEC50 values of the 
compounds are pre-
sented in parenthe-
ses. 
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testing set (in which its activity was predicted 

using the trained model) whereas the remaining 

samples (N-1) were used as a training set to 

train and construct the model. The same process 

was repeated until every compound in the  

dataset was selected to be used as a testing set 

(Sammut and Webb, 2011). 

 

Assessment of model performance 

The constructed models were assessed for 

their predictive performance using two statistical 

parameters i.e., correlation coefficient (R) and 

root mean square error (RMSE). The first  

parameter reflects predictive correlation of 

the model whereas the second one represents 

predictive error (Rácz et al., 2015). 

 

Application of the constructed models for 

guiding the design of modified compounds 

To increase structural diversity, a set of 

752 structurally modified compounds was  

rationally designed based on key descriptors 

presented in the constructed QSAR models. 

All newly designed compounds were undergone 

the same processes as their parent compounds 

(e.g., drawing, geometrical optimization,  

and descriptor calculation) to obtain their 

informative descriptor values, and their S1P 

activities (pEC50 values) were subsequently 

predicted using the constructed models. 

 

In silico drug-likeness prediction 

The newly designed compounds were 

predicted for their drug-likeness using in 

silico web-based tool SwissADME (Daina et 

al., 2017). Chemical structures in SMILES 

format were uploaded for prediction. The 

drug-likeness of the compounds was assessed 

based on Lipinski's rule of five (LRo5). 

 

RESULTS AND DISCUSSION 

QSAR modeling 

Two final datasets of 6 quinoxaline-based 

(scaffold A) and 5 indole-based (scaffold B) 

S1PR2 activators were prepared for construction 

of two QSAR models, Figure 2. Compounds 

were preprocessed to obtain their descriptor 

values. Bioactivity values were normalized 

into pEC50 values. Descriptor selection was 

performed to select a final set of 6 informative 

descriptors for construction of scaffold A 

model (4 descriptors: R2v+, MATS5m, nR05, 

and Km) and scaffold B model (2 descriptors: 

H3e and E3v), Table 1. Dataset and predicted 

activities of scaffolds A and scaffold B 

models are provided in Tables 2 and 3. 

Two QSAR models were successfully 

constructed using MLR (i.e., scaffold A and 

scaffold B models). Two built models provided 

acceptable predictive performance as shown 

by their validated statistical values for both 

training and testing sets (Rtr = 0.9667-0.9997, 

RMSEtr = 0.0046-0.0375, Qcv = 0.7902-0.9989, 

and RMSEcv = 0.0093-0.1057, Table 4). Com-

parative plots of experimental pEC50 versus 

predicted pEC50 values are provided in Figure 

3. 

From scaffold A, four descriptors play 

roles as predictors for the activity of quinoxa-

line-based activators. According to regression 

coefficient, the most influential descriptor 

was noted to be a van der Waals volume  

descriptor (R2v+) followed mass descriptors 

(MATS5m and Km), and number of five-

membered ring (nR05), respectively (Table 

4). The high positive values of R2v+ and 

MATS5m together with low positive or high 

negative values of the nR05 and Km are  

required to provide potent activity (high 

pEC50 value). For scaffold B, the van der 

Waals volume descriptor (E3v) also played 

major influence on S1PR activating effect, 

followed by the electronegativity (H3e)  

descriptor (Table 4). Herein, both predictors 

possessed positive regression coefficient (R) 

values suggesting their positive effects on the 

pEC50 values. 
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Table 1: Definitions of informative descriptors used for QSAR modeling 

 Descriptor Definition Type 

Scaffold A R2v+ R maximal autocorrelation of lag 2 / 
weighted by van der Waals volume 

GETAWAY descriptors 

 MATS5m Moran autocorrelation of lag 5 weighted by 
mass 

2D autocorrelations 

 nR05 number of 5-membered rings Ring descriptors 

 Km global shape index / weighted by mass WHIM descriptors 

Scaffold B H3e H autocorrelation of lag 3 / weighted by 
Sanderson electronegativity 

GETAWAY descriptors 

 E3v 3rd component accessibility directional 
WHIM index / weighted by van der Waals 
volume 

WHIM descriptors 

 
Table 2: Dataset and predicted activities of scaffold A compounds (1A – 6A) 

 Scaffold A 

1A 2A 3A 4A 5A 6A 

Descriptor R2v+ 0.034 0.035 0.032 0.035 0.028 0.027 

MATS5m -0.026 0.007 0.008 0.008 -0.158 -0.241 

nR05 2 2 2 2 1 1 

Km 0.494 0.436 0.486 0.518 0.579 0.692 

pEC50 value Experimental 5.58 5.77 5.62 5.66 5.41 5.34 

Predicted 5.65 5.72 5.61 5.66 5.44 5.31 

 
Table 3: Dataset and predicted activities of scaffold B compounds (1B – 5B) 

  Scaffold B 

  1B 2B 3B 4B 5B 

Descriptor H3e 2.613 2.697 2.74 2.832 2.723 

E3v 0.131 0.145 0.159 0.155 0.134 

pEC50 value Experimental 5.13 5.38 5.54 5.66 5.33 

Predicted 5.13 5.37 5.54 5.66 5.33 

 
Table 4: Summary of predictive performance of the constructed QSAR models 

 QSAR model 
Training set LOO-CV 

R RMSE Q RMSE 

Scaffold A pEC50 = 25.0339 (R2v+) + 0.1487 (MATS5m) - 
0.0246 (nR05) - 0.7551 (Km) + 5.2207 

0.9667 0.0375 0.7902 0.1057 

Scaffold B pEC50 = 1.5949 (H3e) + 7.4202 (E3v) - 0.0061 0.9997 0.0046 0.9989 0.0093 

 

Figure 3: Comparative plots of experimental pEC50 and predicted pEC50 values from two QSAR models. 
a: Scaffold A (quinoxaline-based compounds), b: Scaffold B (indole-based compounds). Plots of training 
set are presented as green circles and dotted regression lines. 
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Application of the QSAR models for rational 

design of modified compound series 

Key descriptors of the constructed models 

were further used to guide the design of 

new derivatives. Modification strategies are 

conceptually depicted in supplementary 

information section 1.2 and 2.2 (Tables S2 and 

S5). Finally, two sets of structurally modified 

compounds were designed (i.e., scaffold A = 

635 compounds, scaffold B = 117 compounds). 

Chemical structures of the newly designed 

compounds and their predicted pEC50 values 

are provided in supplementary data and 

supplementary information, Figures S1-S11. 

In overview, most of the modified compounds 

exhibit improved predicted activity when 

compared to their parents. 

 

Structure-Activity Relationship (SAR) 

analysis 

Understanding structure-activity relation-

ship (SAR) is essential for successful drug  

development (Macalino et al., 2015; Roy 

et al., 2015b). Herein, SAR analysis was 

performed to reveal key features influencing 

S1PR activating effect of both compound  

series. For each series, a modification template 

is illustrated to facilitate effective discussion 

(as shown in the main panels of Figures 4 and 

6). Insight analysis of each sub-modified series 

was provided to suggest a potential strategy 

for rational design and development of new 

derivatives with improved properties.  

Additionally, the most potent compounds of 

each subseries are summarized in Figures 4, 

5, and 6. 

From the original quinoxaline-based 

activators, compound 2A (pEC50 = 5.77) is the 

most potent compound followed by 4A, 3A, 

1A, 5A, and 6A (pEC50 = 5.66, 5.62, 5.58, 5.41, 

and 5.34, respectively, Table 2. An increased 

length of the alkyl chain amide linker at A site 

on ring D (Figure 4a) could improve activity 

via increasing MATS5m values (4A and 3A, 

Table 2). The presence of long-length alkyl 

chain at A site is required to give high R2V+ 

and MATS5m values, thereby, high pEC50 

values of the compounds (as observed for 

compounds 2A and 4A). The aromatic ring 

(i.e., benzene, and thiophene) nearly attached 

at B site is also essential for potent activity. 

Two compounds without (6A) or with aromatic 

ring attached at this position in further distance 

(5A) provided lower nR05 value (nR05 =1) 

leading to their lesser potency when compared 

to other compounds (1A-4A with nR05 =2), 

Figure 4a and Table 2. Summarized SAR 

analysis of the original compounds 1A-6A is 

provided in supplementary information, Table 

S1. 

An additional set of 635 modified quinoxaline-

based activators were designed. The modified 

compounds were grouped by their main core 

structures into three main templates (Figure 

4b-d) and their modification strategies are 

provided in supplementary information Table 

S2. Summarized SAR analysis of the 

modified compounds 1A-6A is provided 

in supplementary information, Table S3. In 

overview, the modified series 6A provided 

the most potent predicted activities (predicted 

pEC50 = 5.262-5.772, supplementary data, 

Scaffold A). Notably, the replacement of  

nitrogen-containing ring D from the five-

membered (pyrrole) to six-membered ring 

(piperidine or pyridine) gave various effects 

depending on the parent compounds. Improved 

activities were observed for the six-membered 

ring modified series 5A-6A, whereas decreased 

activities were found for those of the series 

1A-4A. This phenomenon could be due to the 

decreased nR05 values (supplementary data, 

Scaffold A). 
For the best modified series 6A, modifications 

were performed on A, B, and C sites to obtain 
287 modified compounds. Most of them 
provided better activities (predicted pEC50 = 
5.262-5.772, supplementary data, Scaffold A) 
than the parent 6A (experimental pEC50 = 
5.340, Table 2). Compounds 6A-116 and 6A-
115 were the two most potent compounds 
(predicted pEC50: 6A-116 = 5.772 and 6A-115 
= 5.769). The improved activity (higher  
predicted pEC50) was suggested to be via  
decreasing the nR05 and Km values while  
increasing the R2v+ value (supplementary  
information, Table S3). A set of promising 
compounds in modified 6A series is summarized 
in Figure 5. Some essential key modifications 
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to achieve preferable activity of series 6A 
were revealed such as 1) a replacement of ring 
D with six-membered ring, 2) modification on 
A site by an insertion of a moiety containing 
terminal benzene ring, 3) a modification on B 
site by replacing the branched alkyl chain 
with -COH and -CN groups as well as 4) a 
modification on C site by substitutions of  
-COCH3 or -COCF3 gave compounds with 
better activities than those substituted with 
benzoyl group. The better activities were  
provided when the longer chain was substituted 
at A position (6A-116 > 6A-44 and 6A-115 > 

6A-43, Figure 5). Substitution at B position 
with -COH group provided better activity 
than with the CN group (6A-116 > 6A-115 
and 6A-44 > 6A-43, Figure 5). The replacement 
of COH group on B position of compound 
6A-44 (predicted pEC50 = 5.767) by the COCH3 
group gave compound 6A-45 (predicted pEC50 
= 5.755) with the lesser potency. Similarly, 
the bulky ring substitutions on A and B  
positions impaired activity of compound  
6A-140 (predicted pEC50 = 5.741) when 
compared to 6A-116 (predicted pEC50 = 5.772). 
Additionally, the substitution at C position 

Figure 4: Summary 
of the most potent 
quinoxaline-based 
original compound (a) 
and modified series 
1A-5A (b-d). Predicted 
pEC50 values of the 
compounds are pre-
sented in parenthe-
ses. 
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Figure 5: Summary of the most potent compounds from modified series 6A. Predicted pEC50 values of 

the compounds are presented in parentheses.  

 
 
with acetyl group (COCH3) gave the more  
potent compounds rather than the COCF3 
group (6A-43 > 6A-47 and 6A-44 > 6A-48). 
The lesser potency of these COCF3 derivatives 
was suggested to be via a shift of MATS5m 
value to positive values and the increased Km 
value (supplementary data, Scaffold A). 

Activity of the original indole-based 

compounds (scaffold B) was ranked as 4B > 

3B > 2B > 5B > 1B (pEC50 = 5.66, 5.54, 5.38, 

5.33, and 5.13, respectively, Table 3). The 

two most potent compounds (4B and 3B) are 

chloro-containing derivatives indicating that 

substitutions on ring A with chlorine (Cl) 

atom provides better improved activity than 

substitutions with alkyl (2B) or hydrogen 

(1B) groups. This could be via the increasing 

values of both H3e and E3v descriptors (Figure 

2 and Table 3). Moreover, an insertion of  

additional chloro group on the A ring of 3B 

gave the 4B compound with increased activity 

via increasing the value of van der Waals  

volume (4B > 3B: H3e value: 4B = 2.832, 3B 

= 2.74, Table 3). Summary SAR analysis of 

original compounds 1B-5B is provided in 

supplementary information, Table S4. 

The QSAR scaffold B model was used to 

guide a design of 117 modified compounds 

(supplementary information, Table S4) and 

are subdivided into 5 subseries (1B-5B). The 

most potent compounds of each subseries are 

summarized in Figure 6b. In overview, the 

modifications provided compounds with  

improved activities in every subseries. The 

substitution on Xa position of ring A with the 

ring-containing moiety (aliphatic ring: 1B-3, 

2B-3, and 3B-4 or aromatic ring: 4B-48)  

provided the best activities when compared to 

other types of moieties (i.e., -OH, -OCH3,  

-OCF3, and alkyl chain). Notably, improvement 

was observed when the -CH3 group of the  

parent 2B (experimental pEC50 = 5.38) is  

replaced by a cyclohexane ring to give  

compound 2B-3 (predicted pEC50 = 8.025). 

The same improvement was noticed when 

comparing parent mono-chloro containing 

compound 3B (experimental pEC50 = 5.54) 
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with the modified 3B-4 (predicted pEC50 = 

8.269). The improved activity of the 3B-4 is 

also influenced by a substituted fluorine (F) 

atom on the Yb moiety of ring B. The type of 

halogen atom substituted on this Yb position 

also affected the activity of the compounds as 

observed for modified subseries 3B. The best 

activity is achieved by substitution with fluorine 

(F: 3B-4: pEC50 = 8.269) followed by chlorine 

(Cl: 3B-5: pEC50 = 8.223) > bromine (Br: 3B-

6: pEC50 = 8.148) > iodine (I:3B-7: pEC50 = 

8.061), supplementary information, Table S5 

and supplementary data, Scaffold B). For 

modified 4B series, the compounds with 

COCF3 substitution on Xa position (4B-48 

to 4B-55: predicted pEC50 = 6.275-6.795, 

supplementary information, Figure S10) 

provided the best improvement among others. 

This could be due to their high E3v value (all 

compounds possess E3v value > 3, greater 

than those of other series). 

For compound 5B possessing different 

core structure, the modifications effectively 

improved activity (as shown by high predicted 

pEC50 = 5.794-8.784, supplementary information, 

Table S5 and supplementary data, Scaffold 

B). The best improvements were noted when 

the X moieties are substituted by alkyl chain 

(5B-9) or aromatic ring (5B-7 and 5B-11) 

moieties, while the Y moieties are replaced 

with long (5B-7) or branched alkyl (5B-9 and 

5B-11) chain, Figure 6b.  

 

 

 

Figure 6: Summary of the most potent indole-based original compounds (a), and modified series (b). 
Predicted pEC50 values of the compounds are presented in parentheses. 
  

Figure 6: Summary of the 
most potent indole-based 
original compound (a), 
and modified series (b). 
Predicted pEC50 values of 
the compounds are pre-
sented in parentheses. 
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Predicted drug-likeness of the newly  

designed compounds 

Regarding the Lipinski’s rule, newly  

designed compounds were predicted for their 

drug-like parameters including molecular 

weight (MW), Ghose-Crippen-Viswanadhan 

octanol-water partition coefficient (AlogP), 

number of hydrogen bond donors and  

acceptors (nHBDon and nHBAcc) (Lipinski 

et al., 2001). The parameter values were 

visualized as distribution plots (Figure 7). It 

was shown that all compounds are accepted 

by the rule of five, suggesting that they are 

drug-like molecules with the possibility 

for further development. 

 
Figure 7: The distribution of Lipinski’s descriptors 
of scaffold A (yellow) and scaffold B (blue). Abbre-
viation: MW, molecular weight; AlogP, Ghose-Crip-
pen-Viswanadhan octanol-water partition coeffi-
cient; nHBDon, number of hydrogen bond donors; 
nHBAcc, number of hydrogen bond acceptors 

 

CONCLUSION 

This study demonstrates the utilization of 

QSAR modeling for facilitating the effective 

design of novel nitrogen-based heterocyclic 

S1PR2 activators. Two QSAR models were 

successfully constructed and provided good 

predictive performance (Rtr = 0.9667-0.9997, 

RMSEtr = 0.0046-0.0375, Qcv = 0.7902-0.9989, 

and RMSEcv = 0.0093-0.1057). The constructed 

models were further applied to guide the design 

and activity prediction of an additional set of 

752 modified compounds. The QSAR-driven 

modification on scaffold B outperformed those 

on scaffold A in improving the activities (pre-

dicted pEC50 values: modified scaffold B > 

6.00, modified scaffold A ≤ 5.80). All newly 

designed compounds were predicted to be 

drug-like molecules. Additionally, the models 

revealed key properties required for potent 

S1PR2 activities including van der Waals  

volume (R2v+ and E3v), mass (MATS5m and 

Km), number of 5-membered rings (nR05), 

and electronegativity (H3e), which would be 

beneficial for future design, screening, and 

development of the related compounds. 

Finally, a set of 25 newly designed compounds 

with outstanding predicted activities (scaffold 

A = 18 and scaffold B = 7 compounds) were 

highlighted for further development. This work 

demonstrates an initial step in the discovery 

journey of the novel osteoanabolic agents, and 

further studies regarding the synthesis and  

biological investigations (i.e., in vitro, in vivo, 

clinical trials) are essentially recommended. 
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