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ABSTRACT 

Cancer investigations in microarray data play a major role in cancer analysis and the treatment. Cancer microar-
ray data consists of complex gene expressed patterns of cancer. In this article, a Multi-Objective Binary Particle 
Swarm Optimization (MOBPSO) algorithm is proposed for analyzing cancer gene expression data. Due to its 
high dimensionality, a fast heuristic based pre-processing technique is employed to reduce some of the crude 
domain features from the initial feature set. Since these pre-processed and reduced features are still high dimen-
sional, the proposed MOBPSO algorithm is used for finding further feature subsets. The objective functions are 
suitably modeled by optimizing two conflicting objectives i.e., cardinality of feature subsets and distinctive ca-
pability of those selected subsets. As these two objective functions are conflicting in nature, they are more suita-
ble for multi-objective modeling. The experiments are carried out on benchmark gene expression datasets, i.e., 
Colon, Lymphoma and Leukaemia available in literature. The performance of the selected feature subsets with 
their classification accuracy and validated using 10 fold cross validation techniques. A detailed comparative 
study is also made to show the betterment or competitiveness of the proposed algorithm. 
 
Keywords: Cancer micro array, gene expressions, feature selection, binary PSO, classification 
 
 
 
 

INTRODUCTION 

Cancer treatments are targeted for thera-
pies to distinct tumour types by using many 
computational methods to analyze cancer da-
ta, cancer deaths are more than heart disease 
in persons younger than 85 years (Jemal et 
al., 2010). Cancer tissue classification is 
used for diagnosing the cancer. Cancer clas-
sification based on gene expression monitor-
ing is used to discover and predict cancer 
classes of all types without prior biological 
knowledge (Golub et al., 1999). Prior to 

classification, finding relevant genes are 
highly significant to classifying the cancer 
microarray data. Only few relevant genes are 
important in the classification. Irrelevant 
genes cause for low accuracy in classifica-
tion by hiding relevant features (Guyon et 
al., 2002). It is therefore not surprising that 
much effort have been put into developing 
methods for gene selection (Saeys et al., 
2007). 

Microarray data, involves the decoding 
of approximately 30000 human genes, a kind 
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of NP-Hard problem (Banerjee et al., 2007). 
Feature selection technique on high dimen-
sional helps to identify key features, also re-
duces the computational cost and increases 
the classifier performance. For classifier ac-
curacy in DNA microarray many methods 
have been proposed, ONCOMINE platform, 
which is a collection of many gene expres-
sion dataset for enlarging its research 
(Rhodes et al, 2004), recent studies done by 
(Hatzimichael et al, 2014; Lu et al., 2014) 
reveals its demand, clustering (Mitra and 
Ghosh, 2012), and feature selection (Lazar et 
al., 2012; Linde et al, 2015; Kurakula et al, 
2015; Marchan, 2015; Chandrashekar and 
Sahin, 2014) are recent trends in the re-
search. Hence, expression profiling or mi-
croarray gene expression data analyses are 
prominent tasks in this field. 

Feature selection methods selects a sub-
set of ‘d’ features from a set of ‘n’ features 
on the basis of optimization methods. There 
are many high dimensional datasets which 
have thousands of features and many of them 
are irrelevant or redundant. Unnecessary fea-
tures increase computational burden and 
make generalization more difficult (Lazar et 
al., 2012). The feature selection techniques 
are important tool to reduce dimensionality 
and to select useful feature subsets that max-
imizes the classification accuracy (Saeys et 
al., 2007). 

Feature selection methods can be catego-
rized as: filter based, wrapper based, embed-
ded/hybrid based and ensemble methods 
(Lazar et al., 2012). Filter techniques 
(Elalami, 2009), selects feature subsets inde-
pendently of any learning algorithm, assess a 
significant score with a threshold value to 
choose the best features. The wrapper model 
(Sainin and Alfred, 2011) uses predictive ac-
curacy of predetermined learning algorithms. 
The embedded techniques (Wahid et al, 
2011) allow interaction of different class of 
learning algorithms. More recently, the en-
semble model (Nagi and Bhattacharyya, 
2013) based on different sub sampling strat-
egies, the learning algorithms run on a num-
ber of sub samples and the acquired features 

are united into a stable subset. However the 
feature selection techniques can be also cate-
gorized based on search strategies used such 
as forward selection, backward elimination, 
forward stepwise selection, backward step-
wise selection and random mutation (Mlad-
eni, 2006). 

Feature selection algorithms are to find 
feature subsets which are validated by classi-
fication accuracy for checking its perfor-
mance (Yu et al., 2008). 

I. Evolutionary computation is a biological-
ly inspired meta-heuristic used for search 
and optimization representing a powerful 
and rapidly growing field of artificial in-
telligence. It uses natural genetics and 
natural selection to evolve a population 
of candidate solutions for a given prob-
lem. In this paper, we presented a multi 
objective BPSO algorithm to select fea-
ture subsets from high dimensional gene 
expression data. PSO has certain merits 
with respect to others such as: i) it uses 
less number of parameters;  

II. it may converge faster and has less com-
putational burden and  

III.  having potential accuracy.  
We proposed a BPSO that preserves bet-

ter solutions for the next generation. At the 
first stage, the data is normalized, discretized 
and converted to binary distinction table by 
reducing the dimensionality of each sample. 
At the second stage, BPSO is used to select 
the significant feature subsets. External vali-
dation of selected feature subsets is done in 
terms of classification accuracy with stand-
ard classifiers (Hall et al., 2009). 

The remaining part of the paper is struc-
tured as follow. The second section describes 
the preliminaries of PSO algorithm and dom-
inance criteria. The third section discusses 
about pre-processing of gene expression da-
ta, objective functions and the proposed 
MOBPSO. The fourth section is about vari-
ous results on three cancerous microarray da-
ta such as colon, lymphoma and leukaemia 
with their validation through standard ma-
chine learning classifiers. The last section 
concludes the article. 
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PRELIMINARIES 

This section formally describes the basics 
of micro array gene expression data, binary 
particle swarm optimization algorithm, the 
dominance criteria with non-dominated sort-
ing algorithm that are relevant for under-
standing the present work.  

 
Micro array gene expression data 

In early 1980’s the Array technology was 
started, did not come into prominence until 
the mid-1990. But, with the introduction of 
cDNA microarray technology got lot of fame 
(Sun et al., 2013). Today, microarrays re-
searchers using array technology in genomic 
research with a diversified range of applica-
tions in biology and medicine. A few recent 
applications include microbe identification, 
tumour classification, evaluation of the host 
cell response to pathogens and analysis of 
the endocrine system (Konishi et al., 2016). 

Analysing DNA microarray data requires 
a pre-processing phase to produce new bio-
logical assumptions, this phase involves dis-
tribution, normalization and gene filtering 
and discretization (Lévêque et al., 2013). 

Microarray data classification, which 
predicts the diagnostic category of a sample 
from the expression array is a kind of super-
vised learning. Microarray with orderly ar-
ranged samples, provides a good media for 
matching known and unknown DNA seg-
ments with the help of base pairing rules. 
Microarrays produces huge information re-
quires a series of repeated analyses to render 
the data interpretable and find out hidden in-
formation or pattern in them. The direct out-
put of microarrays is difficult to distinguish 
various conditions of the samples, or the 
time points. 

 
Figure 1: An illustration of PSO architecture 
 
 
Multi objective optimization 

Multi objective optimization involves 
more than one objective function to get op-
timal solutions. This involves optimization 
of single objective function with a trade-off 
between different objectives, multi objective 
optimization is also achieved through Parti-
cle Swarm Optimization (Coello and Lechu-
ga, 2012). 

 
BPSO (binary particle swarm optimization) 

Particle swarm optimization is a heuris-
tic, multi-agent, optimization and evolution-
ary technique (James and Russell, 1995). It 
is found to be robust in solving problems 
featuring nonlinearity, non-differentiability, 
multi criteria, and high-dimensionality 
through adaptation which is derived from so-
cial-psychological theory (James and Rus-
sell, 1997).  

The progress of every particle is calcu-
lated as per the defined fitness function 
(James, 1997) and is updated in their veloci-
ties and positions according to the following 
equation. 

 
Where,  

)e + (1

1
S(vid)

idv-
  

Where rand() is a function, to generate a uni-
form distributed random number in [0,1]. 



EXCLI Journal 2016;15:460-473 – ISSN 1611-2156 
Received: June 27, 2016, accepted: July 12, 2016, published: August 01, 2016 

 

 

463 

Dominance criteria and non-dominated 
sorting 

In dominance criteria, concept of opti-
mality lies among set of solutions. Solution 
is said to be dominated with respect to the 
other solutions based on certain conditions. 
Non-dominated set in a population are iden-
tified with the non-dominated sorting algo-
rithm described in (Deb, 2001). 

In this paper, we used two objective 
functions for finding the non-dominated set 
among the populations and then assigned the 
ranks accordingly. 
 

PROPOSED METHODOLOGIES 

This section describes the basic pre-
processing of gene expression data, objective 
functions formulation and its justification, 
followed by the proposed MOBPSO algo-
rithm. 

 
Pre-processing gene expression data 

Pre-processing aims to eliminate the am-
biguously expressed genes. During feature 
subset generation, appropriate smallest set of 
differentially expressed genes are selected 
across the classes for efficient classification. 
1. The normalization is to make the values 

lie between 0.0 to 1.0. Attribute wise 
normalization is done by  

)min(max

)min)((
)(|

jj

jii
ij

xa
xa




  ,∀i 

where maxj maximum and minj mini-
mum to the gene expression values for 
attribute aj over all samples. This makes 
the normalized continuous attribute value 
in the range 0 to 1. 

2. Then two thresholds Thi and Thf, based 
on the idea of quartiles, are chosen, as in 
(Banerjee et al., 2007). Let N be the 
number of patterns in the dataset. The 
measurements are divided into a number 
of small class intervals of equal width δ 
and the corresponding count of class fre-
quencies are frc. The position of the kth 
partition value (k = 1,2,3 for four parti-
tions) is calculated as  

c

ck
ck fr

cfrR
ITh

)( )1
 *  

where lc is the lower limit of the cth class 

interval, 
4

)*( kN
Rk   is the rank of the 

kth partition value, and cfrc-1 is the cumu-
lative frequency of the preceding class 
such that cfrc-1 ≤ Rk ≤ cfrc. This has been 
sketched in the following Figure 2.  

 

Figure 2: Quartile graph 
 
 
3. Converting the attribute value table to 

binary (0/1) form as follows: 
4. If a|(x) ≤ Thi Then put ’0’, Else If a|(x) ≥ 

Thf Then put ‘1’, Else put ‘*’ (don’t 
care). 

5. Find the average occurrences of ‘*’ as 
threshold Tha. 

6. The attributes whose number of ‘*’s are 
≥ Tha are removed from the table This is 
the modified (reduced) attribute value ta-
ble Fr. 
After this, the number of features in dis-

tinction table becomes 1102 features from 
2000 features for colon, become 1867 fea-
tures from 4026 for lymphoma, and become 
3783 features from 7129 for leukemia da-
taset. 

 
Distinction table preparation 

To make a distinction table, a matrix of 

binary values with dimensions N
cc

*
2

)12( 
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is defined, where N is the number of features 
in F, C is the number of objects/samples. An 
entry b((k,j),i) of the matrix corresponds to 
pair of objects (xk,xj) and with the attribute 
ai. 

 
 

The presence of a ’1’ signifies the attrib-
ute ai’s ability to distinguish (or discern) be-
tween the pair of objects (xk, xj). 

For a decision table F with N condition 
attributes and a single decision attribute d, 
the problem of finding a reduct is equivalent 
to finding a minimal subset of columns R(⊆ 
{1,2,··· ,N}) in the distinction table using 
(4), satisfying ∀(k,j)∃i ∈ R : b((k,j),i) = 
1,whenever d(xk) ≠ d(xj).  

So, in effect, we may consider the dis-
tinction table to consist of N columns, and 
rows corresponding to only those object 
pairs (xk,xj) such that d(xk) ≠d(xj). 
a) As object pairs corresponding to the same 

class do not constitute a row of the dis-
tinction table, there is a considerable re-
duction in its size thereby leading to a de-
crease in computational cost. 

b) Additionally, If either of the objects in a 
pair, has ‘∗’ as an entry under an attribute 
in table Fr Then in the distinction table, 
put ‘0’ at the entry for that attribute and 
pair. 

c) The entries ‘1’ in the matrix correspond to 
the attributes of interest for arriving at a 
classification decision. 

If C1 and C2 are the number of objects of 
the two classes respectively, then rows of the 
distinction table turn out to be 

2

)1(*
)*( 21




cc
cc , 

where C1+C2 = C. This reduces time com-
plexity of fitness computation to O(N ∗ C1 ∗ 
C2). 

 
 

Table 1: A simple example of a distinction table 

 F1 F2 F3 F4 F5 F6 F7 

(C11,C21) 1 1 1 0 1 0 1 

(C11,C22) 0 1 0 1 0 1 0 

(C11,C23) 0 1 1 0 1 0 0 

(C12,C21) 1 0 1 0 1 0 1 

(C12,C22) 0 1 0 0 1 0 0 

(C12,C23) 1 0 1 0 1 0 0 

 
 

Table 1 describes how a sample distinc-
tion table looks like. Here, assume that there 
is seven conditional features {F1, F2, F3, F4, 
F5, F6, F7}, the length of vector is N = 7. In a 
vector v, the binary data ‘1’ represents if the 
corresponding feature is ‘present’, and a ‘0’ 
represents its absence. The two classes are 
C1 (with two objects i.e. C11 and C12) and C2 
(with three objects i.e. C21, C22 and C23). The 
rows represent the object pairs and columns 
represent the features or attributes. The ob-
jective is to choose minimal number of col-
umn (features) from the table that covers all 
the rows (i.e., object pairs in the table). Note 
that, for multi class problem, if there are k 
number of classes in a particular dataset, 
there will be kC2 number of rows in the dis-
tinction table. Therefore, the proposed meth-
od is not only limited to solve two class 
problems, but multi-class problem also. 
However, the present work is focused on two 
class problems for benchmark datasets as 
available in literature. 

 
Objective functions design 

We used two objective functions Fit1 and 
Fit2. Objective Function 1: The first objec-
tive function F1 is used to finds number of 
features (i.e. number of 1’s). The proposed 
first objective function is as follow: 

N

ON
vFit v )(
)(1


  (3) 

Objective Function 2: The second objec-
tive function F2 decides the extent to which 
the feature can recognise among the objects 
pairs. 
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)*(
)(

21
2 cc

R
vFit v  (4) 

Here, v is the chosen feature subsets, Ov 
represents the number of 1’s in v, C1 and C2 
are the number of objects in each of the class 
and Rv is the number of object pairs (i.e. 
rows in the distinction table) v can discern 
between. The objective function Fit1 gives 
the candidate credit for containing less num-
ber of features or attributes in v, and Fit2 de-
termines the extent to which the candidates 
can discern among objects pairs in the dis-
tinction table.  
In simple GA, the two objective functions 
are combined into one by weighted sum as 
Fit = Fit1 ∗ α + Fit2 ∗(1−α), where 0 < α1 < 1.  

As an example to calculate Fit1 and Fit2, 
let us take a sample input vector 
v = (1,0,1,1,0,1,1), Two classes are C1 and 
C2, where class lengths are C1 = 2, C2 = 3, 
and length of vector is N = 7 (as depicted in 
table 1). The number of 1’s in v is Ov = 5, 
and Rv is calculated as compare with input 
vector v matching number of presented 1’s 
from each row in distinction table, i.e Rv = 5. 
Therefore 

N

ON
vFit v )(
)(1


  = (7−5)/ 7 = 0.29, 

and  

)*(
)(

21
2 cc

R
vFit v  = 5 /6 = 0.84. 

Here, a multi objective BPSO algorithm 
is proposed for feature subset selection. The 
best non-dominated solutions of combined 
population of swarm at two successive gen-
erations (i.e., current and next population) 
are preserved at each generation. Only best 
50 % solutions are allowed to evolve for the 
next generation. This is repeated for finite 
number of generations. The proposed ap-
proach is described in Algorithm [1]. 

 

The MOBPSO algorithm for feature  
selection 
 

Algorithm 1: The proposed  
Multi Objective BPSO algorithm 

Step: 1  Initialize P no. of solutions with random 
velocity and positions  

Step: 2  Calculate fitness on P using equation 
(5) and (6)  

Step: 3  Update pbest Update gbest  
Step: 4  Update velocities and coordinates of P 

using equation (1) and (3) to generate 
P|  

Step: 5  Calculate fitness values for P| using 
equation (5) and (6)  

Step: 6  Combine both P and P| as P||  
Step :7  Perform non-dominated sorting on P|| 

using algorithm [1]  
Step: 8  Choose 50 % best ranked solutions 

from P|| as P  
Step: 9  Repeat Step (3–8) for finite number of 

generations 
 
 

gbest selection 
After perform non-dominating sorting on 

mixed population (i.e. parent and child), we 
can get non dominated solutions. Here, we 
choose one random solution as gbest among 
top raked non-dominated solutions. Since, 
more than one top ranked solutions are may 
be available, but all solutions having same 
priority. 
 

RESULTS AND DISCUSSIONS 

Cancer gene expression data sets 
In this study, three benchmark cancer da-

tasets have been used for training and testing 
purpose.  
I. Colon Cancer dataset available at 

(http://genomics-pubs.princeton.edu/ 
oncology/) is a set of 62 gene expres-
sions, containing 2000 genes (features). 

II. Lymphoma dataset available at 
(http://llmpp.nih.gov/lymphoma/data/fig
ure1/figure1.cdt) is a set of 96 gene ex-
pressions, having 4026 genes. 

III. Leukaemia dataset available at 
(http://www.genome.wi.mit.edu/MPR) 
is a set of 38 gene expressions, having 
7129 genes. 
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RESULTS 
Our proposed MBPSO on colon microar-

ray, lymphoma microarray, and leukemia 
microarray obtained minimal subsets of fea-
tures. In our experiment values of accelerator 
coefficients c1 and c2 are set to 2 whereas ve-
locities set to minimum of -4 and maximum 
of 4 (Sudholt and Witt, 2008). In BPSO, in-
ertia weight (w) treated as one of the most 
important parameter, through which we can 
improve accuracy by estimation and balanc-
ing of local and global search (Shi and Eber-
hart, 1999). After several experiments, ‘w’ 
was set to 0.9. Various population sizes were 
taken, to check feature subsets behaviour, al-
so the swarm size set as per literature. After 
several experiments maximum number of 
runs was set to 50 which were also tested 
with varied population size like 10, 20, 30 

and 50. Many standard classifiers have been 
used for testing purposes to show consistent 
performance and robustness of the proposed 
method. The experimental results are carried 
out on three bench mark datasets as summa-
rized in Table 3. 

Note that k is chosen to be an odd num-
ber to avoid the ties. The correct classifica-
tion are reported to be 93.54 %, 95.85 % and 
94.74 % for those three datasets with varies 
swarm size and k values. The results shown 
above is based on average score over (10- 
15) runs. Table 3 represents k−NN classifi-
cation results with single objective function 
of GA. Here, it is giving 100 % correct clas-
sification score for all three data sets when k 
= 1. For colon data 93.55 % score when k = 
3, 90.33 % for k = 5 and for k = 7 it is 
83.88 %, on 10 feature subset. 

 

Table 2: Details of the cancer microarray datasets before and after pre-processing 

Datasets 
Total  

Features 
Reduced 
Features# Classes Samples 

Colon 2000 1102 
Colon 40 

Normal 22 

Lymphoma 4026 1867 
Other 54 

B-cell 42 

Leukemia 
#-after preprocessing 

7129 3783 
ALL 47 

AML 25 

 
 

Table 3: K-nearest neighbour (k-NN) classification results on colon microarray, lymphoma microarray, 
and leukemia microarray for the performance with proposed method 

Dataset 
Population 

Size 
Subset 
features 

k-NN) classification ( %) on test set 

K = 1 K = 3 K = 5 K = 7 

Colon: 
#Genes 2000 
Reduce to 1002 

10 10 100 83.87 83.87 80.65 

20 9 100 83.87 83.87 83.87 

30 9 100 93.54 80.65 83.87 

50 9 100 90.32 80.65 87.09 

Lymphoma 
#Genes 4026 
Reduce to 1867 

10 20 100 93.75 93.75 89.75 

20 22 100 95.85 91.66 91.66 

30 21 100 95.85 93.75 91.66 

50 15 100 93.75 93.75 91.66 

Leukemia 
#Genes 7129 
Reduce to 3783 

10 14 100 89.49 89.49 89.49 

20 15 100 92.10 89.49 92.10 

30 14 100 94.75 89.49 89.49 

50 14 100 94.75 86.85 89.49 
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For lymphoma data, it is 93.75 %, 
93.75 % and 89.59 % where k = 3, k = 5 and 
k = 7 respectively. Similarly, for leukemia 
data, where k = 3, 5 and 7 the correct classi-
fication is 94.74 %. 

Table 4 depicts the results for the all 
three datasets using Bayes Family classifiers. 
The Bayes Logistic Regression (BLR), 
Bayes Net(BN) classifier, and Naive 
Bayes(NB) classifiers given 93.55 % highest 
correct classification result on 13 features 
subset for colon data. For the lymphoma da-
ta, 100 % correct classification score has 
been achieved by using Bayes Logistic Re-
gression whereas Bayes Net classifier gives 
95.84 % and Naive Bayes classifiers gives 
97.42 % on 22 feature subset. Similarly for 
leukemia data, it is 92.1 % classification 
with Bayes Logistic Regression, 89.48 % 
with other two classifiers on 14 feature sub-
set. 

We investigated different well known 
function based classifiers such as LibLinear, 
LibSVM, Logistic, Multilayer perceptron 
(MLP), stochastic gradient descent (SGD) 
and Spegasos, reported in Table 5. For colon 
data, 100 % correct classification score using 
all classifiers with 13 and 9 gene subsets ex-
cept SGD and SPegasos classifiers, where 
those are giving 96.78 % as highest classifi-
cation on 13 gene subset. For lymphoma da-

ta, same table depicts, 100 % score for all 
classifiers with various (i.e. 15 to 22) gene 
subset. For leukemia data, shows that 100 % 
correct classification score for all classifiers 
with various gene subsets except SGD and 
SPegasos classifiers, where those are giving 
94.71 % and 93.37 % as highest classifica-
tion on 13 gene subset. 

Table 6 shows that results of various well 
known Tree based classifiers such as Best 
First Decision (BFT), Decision Tree (DT), 
Functional tree (FT), Decision tree classifier 
(J48), Logistic model tree (LMT), Random-
forest (RF) and reduced error pruning tree 
(REPT). From the table we observe that, ex-
cept BFT and DT classifiers, remaining all 
classifiers are giving 100 % correct classifi-
cation score at various selected subsets for 
all three data sets. The BFT giving 93.55 % 
correct score for colon data, 97.91 % for 
lymphoma data, and 97.37 % for leukemia 
data. And the Decision Stump classifiers are 
giving 83.88 % for colon data with 10 and 6 
gene subset, 87.50 % for lymphoma data 
with 14 gene subset and it is 86.85 % for 
leukemia data with 11 gene subset. We 
achieved 100 % correct classification on 
some not included in the Table 6 Alternating 
Decision Tree, Extra Tree, LADTree and 
Random Tree classifiers. The classifiers are 
shown in Table 6. 

 
Table 4: Performance on three datasets using Bayes family Classifiers 

Dataset 
Selected 
features 

Used classifier Method 

BLR Bayes Net Naive Bayes 

Colon 

13 93.55 93.55 93.55 

9 87.10 67.74 80.65 

9 87.1 67.74 80.64 

9 80.65 64.52 83.88 

Lymphoma 

20 95.84 93.75 93.75 

22 100 95.84 97.42 

21 95.84 91.67 93.75 

15 93.75 89.59 93.75 

Luekemia 

14 92.2 71.1 89.48 

15 86.85 86.85 89.48 

14 92.1 89.48 89.48 

14 89.48 89.48 89.48 
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Table 5: Performance on three datasets using Function Based Classifiers 

Dataset 
Selected 
features 

Used classifier methods and results in ( %) 

LibLinear LibSVM Logistic MLP SGD Spegasos 

Colon 

13 100 100 96.78 100 96.78 96.78 

9 93.54 100 100 96.77 90.32 93.55 

9 93.54 100 100 96.77 90.32 93.55 

9 77.42 100 90.33 100 83.87 90.32 

Lymphoma 

20 100 93.75 100 97.92 97.92 100 

22 100 100 100 97.92 100 100 

21 100 95.84 100 97.92 95.84 100 

15 100 91.67 100 100 95.84 100 

Leukemia 

14 100 100 100 97.37 94.74 86.84 

15 92.11 100 100 97.37 94.74 92.11 

14 89.48 100 100 100 92.1 97.37 

14 100 100 100 100 89.48 97.37 

 
Table 6: Performance on three datasets using Tree Based Classifiers 

Dataset 
Selected 
features 

Used classifier methods and result in ( %) 

BFT DS FT J48 LMT RF REPT 

Colon 

13 96.78 87.10 100 96.78 100 100 96.78 

9 64.52 67.75 87.1 96.78 87.1 100 96.78 

9 64.52 67.75 87.1 96.78 87.1 100 96.78 

9 93.55 77.42 87.09 96.77 83.87 100 77.42 

Lymphoma 

20 93.75 87.5 93.75 97.91 93.55 97.91 93.75 

22 93.75 87.5 100 97.92 100 100 87.5 

21 95.84 87.5 97.92 95.84 91.67 100 91.67 

15 91.67 81.25 97.92 95.84 91.67 91.67 81.25 

Leukemia 

14 89.49 71.1 94.74 97.37 97.37 100 86.84 

15 92.11 84.22 94.74 92.11 92.11 100 92.11 

14 97.37 89.48 92.1 97.37 86.85 100 89.48 

14 97.37 71.1 100 97.37 97.37 100 71.1 

 
 
K-fold cross validation 

Cross-validation techniques are a thor-
ough computational mechanism to estimate 
performance by the use of examples as train-
ing and testing sets. In K-fold cross valida-
tion, mimics the training and test sets by re-
peatedly training the algorithm K times with 
a fraction 1/K of training examples left out 

for testing purposes. We use K = 10, which 
is also called 10-fold cross validation, in 
each experimental run, nine folds are used 
for training and remaining one fold is used 
for testing. Therefore, training and test sets 
consist of 90 % and 10 % of data (Zhang, 
2011). Our 10-fold cross validation result on 
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colon, lymphoma and leukemia datasets re-
ported in Table 7. 
 
 
Table 7: 10-fold cross validation on colon,  
lymphoma and leukemia 

Dataset 
Classification Standard 

correct miss mean deviation

Colon 84.52 15.48 0.155 1.128 

Lymphoma 91.67 8.33 0.084 0.851 

Leukemia 80.69 19.31 0.194 1.025 

 
 
Comparisons 

(Liang et al., 2013) introduces a new 
evolving personalized modelling method and 
system (evoPM) that integrates gravitational 
search inspired algorithm (GSA) for select-
ing informative features. Here, they used 4 
high dimensional benchmark datasets, and 
reported the selected feature subsets with a 
minimum of 25 features and maximum of 
101 features. In our algorithm, selected fea-
ture subsets are 9 to 22. Moreover, their clas-
sification accuracy is 87.1 % for colon, 
94.81 % for lymphoma, and it was 97.22 % 
for leukemia data. The proposed MOBPSO 
performs 100 % classification by some of the 
classifiers on these datasets.  

In Figure 3, Performance of Proposed 
MOBPSO Algorithm, NSGA-II and GA on 
colon, lymphoma and leukemia datasets re-
spectively using bayes Classifiers such as 
BLR, BN and NB are shown. In Figure 4, 
Performance of Proposed MOBPSO Algo-
rithm, NSGA-II and GA on colon, lympho-
ma and leukemia datasets respectively using 
Function based Classifiers such as LibLine-
ar, LibSVM, Logistic, MLP, SGD and 
SPegasos are shown. In Figure 5, Perfor-
mance of Proposed MOBPSO Algorithm, 
NSGA-II and GA on colon, lymphoma and 
leukemia datasets using Tree based Classifi-
ers such as BFT, DS, FT, J48, LMT, RF and 
REPT are shown. Figure 6 demonstrates of 
heat maps for three datasets with reduced 
feature subsets of gene samples. The heat 
map is graphical representation of data to 

represent the level of expression of many 
genes across a number of comparable sam-
ples as they are obtained from DNA microar-
rays, where the individual values contained 
in a matrix are represented as colours. Larger 
values were represented by small dark gray 
or black colour and smaller values by lighter 
colours. 
 

 

Figure 3: Performance of Proposed MOBPSO 
Algorithm, NSGA-II and GA on three datasets 
using bayes Classifiers (BLR, BN, NB); (A) per-
formance of Proposed MOBPSO Algorithm, 
NSGA-II and GA on Colon dataset using bayes 
Classifiers (BLR, BN, NB), (B) performance of 
Proposed MOBPSO Algorithm, NSGA-II and GA 
on lymphoma dataset using bayes Classifiers 
(BLR, BN, NB), (C) performance of Proposed 
MOBPSO Algorithm, NSGA-II and GA on leuke-
mia dataset using bayes Classifiers (BLR, BN, 
NB) 
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Figure 4: Performance of Proposed MOBPSO 
Algorithm, NSGA-II and GA on three datasets 
using Function based Classifiers; (A) perfor-
mance of Proposed MOBPSO Algorithm, NSGA-
II and GA on Colon dataset using Function 
based Classifiers, (B) performance of Proposed 
MOBPSO Algorithm, NSGA-II and GA on lym-
phoma dataset using Function based Classifiers, 
(C) performance of Proposed MOBPSO Algo-
rithm, NSGA-II and GA on leukemia dataset us-
ing Function based Classifiers 
 
Z-score analysis 

Z scores provide a relative, semi quanti-
tative estimation of microarray gene expres-
sion levels. Z score is calculated on the basis 
of hybridized intensity among experiments 
of same array type. Z score reflections on 
different hybridization values are as follows:  
I. Z scores values with higher positive rep-

resent the genes with high expressiveness  
II. Z scores values with Low negative val-

ues represent genes that are least ex-
pressed (Cheadle et al., 2003). 

Z scores are mathematically calculated as 
follows:  


)( 

 iG
Z    (7) 

where Gi intensity of Gene, µ is mean of in-
tensity G1...Gn (i.e. aggregate measure of all 

genes), and 



n

i
iG

1

  is SD. 

In Figure 7, Z score of colon, lymphoma and 
leukemia datasets, with a selected feature 
subsets and the selected genes, which are 
highly expressed to select are shown. 
 

CONCLUSION AND FUTURE SCOPE 

In this paper, we presented a MOBPSO 
to find feature subset in cancer gene expres-
sion microarray data sets. Non-dominating 
sorting helps to preserve Pareto-font solu-
tions. The pre-processing aids faster conver- 

 

 
Figure 5: Performance of Proposed MOBPSO 
Algorithm, NSGA-II and GA on three datasets 
using Tree based Classifiers; (A) performance of 
Proposed MOBPSO Algorithm, NSGA-II and GA 
on Colon dataset using Tree based Classifiers, 
(B) performance of Proposed MOBPSO Algo-
rithm, NSGA-II and GA on lymphoma dataset us-
ing Tree based Classifiers, (C) performance of 
Proposed MOBPSO Algorithm, NSGA-II and GA 
on leukemia dataset using Tree based Classifi-
ers 
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Figure 6: Heat map of three datasets with re-
duced features; (A) heat map on colon data with 
reduced features having 9 genes, (B) heat map 
on lymphoma data with reduced features having 
22 genes, (C) heat map of Leukemia data with 
reduced features having 14 genes 

 
gence along the search space and successful-
ly employed to eliminate redundant and ir-
relevant features. The proposed approach is 
experimentally investigated with different 
parameters. The main goal of the feature se-
lection is selecting minimal feature subsets 
with higher classification accuracy which has 
been achieved by two objective functions. 
The result on three benchmark cancer da-
tasets demonstrates the feasibility and effec-
tiveness of the proposed method. The per-

formances of the proposed along with the ex-
isting methods are compared using standard 
classifiers and reported better and competi-
tive performance. 

 

 

Figure 7: Z-Score Analysis of colon, lymphoma 
and leukemia having 9, 22, and 14 genes re-
spectively; (A) Z-Score Analysis of colon having 
9 genes, (B) Z-Score Analysis of Lymphoma 
having 22 genes, (C) Z-Score Analysis of Leu-
kemia having 14 genes 
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