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A B ST R A C T  
Segmentation of the liver from Computed Tomography (CT) volumes plays an important role during the choice 
of treatment strategies for liver diseases. Despite lots of attention, liver segmentation remains a challenging task 
due to the lack of visible edges on most boundaries of the liver coupled with high variability of both intensity 
patterns and anatomical appearances with all these difficulties becoming more prominent in pathological livers. 
To achieve a more accurate segmentation, a random walker based framework is proposed that can segment con-
trast-enhanced livers CT images with great accuracy and speed. Based on the location of the right lung lobe, the 
liver dome is automatically detected thus eliminating the need for manual initialization. The computational re-
quirements are further minimized utilizing rib-caged area segmentation, the liver is then extracted by utilizing 
random walker method. The proposed method was able to achieve one of the highest accuracies reported in the 
literature against a mixed healthy and pathological liver dataset compared to other segmentation methods with an 
overlap error of 4.47 % and dice similarity coefficient of 0.94 while it showed exceptional accuracy on segment-
ing the pathological livers with an overlap error of 5.95 % and dice similarity coefficient of 0.91. 
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I NT R ODUC T I ON 

Liver segmentation is a prerequisite for 
many clinical and research applications, 
segmentation of the liver from Computed 
Tomography (CT) volumes plays an im-
portant role in the choice of treatment strate-
gies for liver diseases (Chen et al., 2011b). 
Liver segmentation is difficult as the liver 
shape is variable and displays low attenua-
tion compared to the neighboring organs, 
making segmentation of the liver a complex 
problem. Being a soft organ, liver shape is 
highly dependent on adjacent organs within 

the abdomen. Moreover, many pathologies 
can have a strong effect on the appearance 
and the shape of the liver while most of the 
time clearly defined edges are not visible on 
many sides of the liver. In particular, the in-
tensity difference between the liver and the 
diaphragm or the spleen or the stomach are 
very small. Although there are formulas that 
estimate the liver volume by utilizing the 
age, weight and the height of the patient, 
these formulas are highly inaccurate in the 
case of pathological livers. Joyeux et al. 
(2003) showed that the correlations between 
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the calculated liver volume by these formu-
las and the volumes of the liver lobes or ana-
tomical segments in pathological livers were 
very low. 

Despite lots of attention, fully automatic 
liver segmentation from a CT volume re-
mains a challenging task (Anter et al., 2013), 
mainly because of the variability of the liver 
shape and the intensity patterns inside and in 
the neighborhood of the liver. On the other 
hand, working inside a liver envelope yields 
better results in case of segmenting and clas-
sifying the lesions inside the liver, previous 
works have indeed shown that the segmenta-
tion of liver lesions was more accurate when 
done inside liver only, in particular for au-
tomatic methods (Taieb et al., 2008; Schmidt 
et al., 2008; Qi et al., 2008; Ben-Dan and 
Shenhav, 2008; Shimizu et al., 2008; Smeets 
et al., 2008; Kubota, 2008; Wong et al., 
2008; Moltz et al., 2008; Stawiaski et al., 
2008; Zhou et al., 2008).  

To address these concerns, a challenge 
was presented to different researchers by The 
Medical Image Computing and Computer 
Assisted Intervention Society (MICCAI) to 
segment liver on clinical bases (Heimann et 
al., 2009). From this challenge, it can be 
concluded that three main approaches have 
been proposed and considered for segmenta-
tion of the liver envelope namely region 
growing strategies, probabilistic atlases and 
statistical shape models. 

Region growing strategies are data-
driven approaches that iteratively construct a 
region of interest (ROI) defined at pixel level 
beginning with an initial set of seeds. Such 
approaches iteratively cluster neighboring 
voxels by deciding whether these voxels are 
to be added to the ROI at any given step. Be-
cause of this definition, region growing 
strategies do not rely on a specific prior 
model but adapt to each image depending on 
the seeds given by the user. Despite their 
simple concept, region growing approaches 
can still provide satisfactory results com-
pared to more evolved approaches, the meth-
od proposed by Rusko et al. (2007) indeed 

offered one of the best results during the 
MICCAI segmentation challenge. 

Probabilistic atlases utilize both the prior 
shape and the spatial location information to 
achieve a refined segmentation. Using prob-
abilistic atlases (PA), Park et al. (2003) seg-
mented the liver by optimizing a Markov 
random field (MRF) formula dependent on 
intensity distributions computed through the 
registration of a PA by thin plates wrapping. 
Zhou et al. (2008) proposed a segmentation 
of the liver using a threshold of the proba-
bilities of segmentation being the liver, 
where this probability is defined at voxel 
level through PA and an intensity model. 
Shimizu et al. (2007) proposed a segmenta-
tion technique for 12 abdominal organs in-
side the abdominal cavity, this technique be-
gins with a rough segmentation obtained 
through PA and priors on intensity distribu-
tions inside each organ, utilizing a level-set 
algorithm for enhancing the final segmenta-
tion. Linguraru et al. (2009) proposed a seg-
mentation of pathologic livers and spleens on 
contrast-enhanced images, an initial segmen-
tation is obtained through series of rigid, af-
fine and nonlinear registrations of one PA, 
the segmentation is then refined using geo-
desic active contours and an estimation of 
the distribution parameters inside the liver.  

Statistical Shape Models (SSM) define a 
mesh for the liver envelope along with pos-
sible deformations of the nodes describing 
the liver boundary (Heimann et al., 2007a). 
However, the high variability of liver shapes 
is highly challenging because of the difficul-
ties in defining an SSM that captures the 
large variations of the liver shapes. Conse-
quently, later authors introduced an addition-
al step in order to improve the limited trans-
formations of SSM. However, the contribu-
tion of SSM remains significant as a recent 
review (Tomoshige et al., 2014) showed that 
an SSM with a subsequent free deformation 
step offered one of the best results for auto-
matic liver segmentation. Lamecker et al. 
(2004) constructed an SSM of the liver that 
was used for segmentation of livers with le-
sions using models of gray-level profiles 
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along surface normals to fit the SSM on new 
images.  

Kainmüller et al. (2007) proposed free 
forms to define the SSM, this approach 
proved to be one of the best during the 
MICCAI segmentation challenge. Heimann 
et al. (2006) introduced an SSM to segment 
the liver without major pathologies while 
mainly following the approach proposed by 
Lamecker et al. (2004), adding a multi-
resolution algorithm and active shape mod-
els. Heimann et al. (2007a-c) later improved 
his approach with an automatic initialization 
of the shape model and by replacing the ac-
tive shape models by a more complex tech-
nique.  

Okada et al. (2008) introduced a segmen-
tation approach combining PA and SSM to 
segment the liver. An initial segmentation is 
done using PA and then the segmentation is 
refined with SSM. Ling et al. (2008) pro-
posed a segmentation using a hierarchical 
shape model, where liver boundaries are de-
tected using learning based approaches.  

In this paper, a segmentation method 
based on fast random walkers (Andrews et 
al., 2010) is proposed for segmenting con-
trast-enhanced CT images in a clinical pro-
spect with potential applications for diagno-
sis and as a first step for the segmentation of 
the liver lesions (Moghbel et al., 2016) as the 
contrast-enhanced CT images remain the 
main medium for diagnosing liver patholo-
gies.  
 

M A T E R I A L S A ND M E T H ODS 

Figure 1 represents the flowchart of the 
proposed segmentation algorithm. The de-
tailed workflow of the proposed segmenta-
tion framework is discussed in the following 
sections. 

 
Background removal and filtering 

As CT images contain parts of the imag-
ing table along the patient’s body, it is re-
quired to remove these unwanted portions of 

the image. To do so, body boundaries are de-
tected by utilizing a Canny edge detector 
(Russ, 2011). The body is then detected by 
selecting the morphologically filled region 
with the largest area in the slice. For increas-
ing the level of edge detail in the image a se-
ries of Top-Hat and Bottom-Hat enhance-
ments (Russ, 2011) are applied to the image, 
Top-hat emphasizes the edges present on the 
image while the bottom-hat decreases the 
undesired distortions on the image. The Top-
Hat image is added to the original image 
while the Bottom-Hat image is subtracted 
from the image. To remove noise in the im-
ages a 3×3 median filter is utilized. The main 
reason median filtering was chosen for the 
preprocessing step of this algorithm is be-
cause median filters have the useful property 
of retaining edge information within an im-
age as seen in Figure 2. Mean filters and 
Gaussian filters tend to blur the edges in an 
image. This is because the median filter does 
not create new unrealistic pixel values when 
the window lays over an edge. 

 
Liver Dome Detection 

As liver sits just below the right lung, ini-
tial liver contour (liver dome) can be easily 
detected by searching from the lung lobe 
above. As lungs are mostly filled by air and 
air has the lowest attenuation coefficient in 
CT images, the lung area is often black re-
sulting in easy detection of the lung lobes 
with reasonable accuracy. After the middle 
point of the right lung is detected, if there 
was a significant decrease (experimentally 
equal to 10 % on average CT series) in the 
area of the lung lobe going from superior to 
the inferior direction in two consecutive slic-
es emergence of the liver dome is implied, as 
illustrated in Figure 3. Although the set 
threshold can result in missing one slice 
(with a relative small liver dome) in some se-
ries, a tradeoff between accuracy and robust-
ness are nevertheless unavoidable. 
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Figure 1: Flowchart of the proposed segmentation 
 

 
Figure 2: Results of median filtering, original image (a) applied to a CT image (b), median filter (c) 
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Figure 3: Liver location with respect to lung (green) (a), CT slice just before liver dome (b) detected 
liver dome in red (c) 

 
Ribcage removal  

Since the main body of the liver is pro-
tected by the rib cage and to minimize the 
computational requirements of the segmenta-
tion algorithm and in order to remove the 
bulk of intercostal muscles between ribs, 
De’Boor algorithm (De Boor, 1972) is uti-
lized for ribcage contour segmentation. The 
centroid or center point of gravity of each rib 
in each slice is calculated, then all the points 
are joined by de Boor's algorithm, to achieve 
a smooth curve an experimental B-spline or-
der of 3 is utilized. In any axial CT image, 
especially those towards the caudal direction, 
there might be slices not containing all the 
ribs, without enough centroid points a suita-
ble curve enclosing the liver cannot be calcu-
lated. To avoid this situation, in case of a 
steep decrease in the area of segmented CT 
slice, detected rib centroids in previous and 
subsequent slices are overlaid on the slice 
being processed and the B-spline is re-
calculated thus avoiding the under segment-
ed slice. Figure 4 shows a CT slice before 
and after rib cage removal. 

 
Proposed segmentation method 

Graph-Cut (GC) based segmentation is 
an alternative to boundary based segmenta-
tion methods, being a semi-automatic seg-
mentation the user is required to provide the 
seeds representing the background and the 
object to be segmented, GC represents the

 
Figure 4: Original CT image (a), CT image after 
ribcage removal (b) 
 
 
image pixels as nodes on a graph with 
weighted edges representing the adjacency 
between the pixels. By finding the minimum 
cost function between all possible cuts of the 
graph, the GC segments the image into 
background and the object (Boykov et al., 
2001). The main disadvantage of regular GC 
segmentation is the bad handling of weak 
edges and noisy images, to overcome this 
limitation many methods have been pro-
posed to enhance the basic GC algorithm. 
One of such methods receiving a wide inter-
est in medical imaging is the random walker 
algorithm (Andrews et al., 2010; Cui et al., 
2013; Grady and Sinop, 2008). Random 
walkers segmentation was proposed by 
Grady (2006), it is a supervised segmenta-
tion method meaning that a set of labels must 
be defined for each object prior to segmenta-
tion, this can be done interactively by the 
operator or be assigned automatically ac-
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cording to a predefined criterion. Random 
walker method segments the image by calcu-
lating the probability  that a random walk-
er starting at pixel ‘i’ first reaching a pixel 
labeled L.  

The principle of random walker segmen-
tation is the construction of an undirected 
graph G= (V, E) where the nodes  cor-
respond to image pixels and . 
Weight  is assigned to edge  connect-
ing nodes  and  based on the following 
equation:  

 
 (1) 

 
Where  is the intensity at the pixel  and 

 is the intensity at pixel j.  is a scaling 
parameter set according to image contrast 
and  is a regularization parameter that 
amounts to penalizing the gradient norm of 

 (  = 0 results in no regularization). In or-
der to increase the performance on complex 
CT images, the local spatial similarity be-
tween local pixels is incorporated into the 
weighting function, with this addition the 
weighting function transforms to:  
 

 (2) 

 
Where the intensity relationship is denoted 
by  (same as Eq. 1) and local spatial rela-
tion is expressed by: 
 

 (3) 
 
Where (  , ) are the spatial coordinates of 
the pixel and (  , ) are the spatial coor-
dinates of the adjacent  pixel and repre-
sents the scale factor of  spread.  

Weight  can be described as the prob-
ability of the random walker crossing a par-
ticular edge, random walkers will cross edg-
es more easily in case of more homogeneous 
edges created by a lower edge weight and 
thus region labels are decided more by the 

pixel distance to seeds labeled L and less by 
image features. Greater values of edge 
weight create less homogeneous edges thus 
making it harder for random walkers to cross 
edges and the region labels are decided more 
by the locations of strong edges.  

With the help of the circuit theory, Grady 
(2006) showed that the connections between 
random walkers on a graph correspond to a 
combinatorial analog of the Dirichlet prob-
lem thus dramatically reducing calculation 
time by providing a convenient and simple 
method for the label probabilities computa-
tion.  

A Dirichlet problem can be defined as 
the problem of finding a harmonic function 
subject to certain boundary values. A Di-
richlet integral could be represented as: 

 
 (4) 

 
The harmonic function minimizing the 

Dirichlet integral and satisfying the bounda-
ry condition can be achieved by the follow-
ing Laplace equation: 

 
 (5) 

 
Let’s denote  as a set of seeded pixels 

and  the set of unseeded pixels, such that 
 and . It was shown 

that all of the probabilities 
 that each node (pix-

el)  being assigned to label L can be 
obtained with the minimization of: 

 
 (6) 

 
Where the probabilities of seeds  are as-
signed as:  
 

 (7) 
 
Where combinatorial Laplacian matrix of L 
is defined as: 
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 (8) 
 
Where  is the degree of the vertex of edge 

 (sum of weights of all the edges  con-
necting , for 2D images the vertices will 
have a degree of 4 or 8 and for 3D images 
the vertices could have a degree from 6 up to 
26. Eq. 4 can be rewritten as: 
 

 (9) 
 
Where  is a diagonal matrix edge weights 
assigned to its diagonal and  is the inci-
dence matrix defined as: 
 

(10) 

 
Eq. 9 can be decomposed as: 
 

 (11) 
 
Where  represents the probabilities of 
seeded and  represents the probabilities of 
unseeded nods, critical points are determined 
by differentiating  with respect to  
as: 
 

 (12) 
 

Which represents a system of linear equa-
tions where  represents the unknowns. 
Using Eq. 7, the combinatorial Dirichlet so-
lution can be found by solving the following 
equation for all labels: 
 

 (13) 
 

Only L ˗ 1 systems must be solved as the 
sum of all probabilities at a node will be 
equal to zero: 

 

(14) 
 

After minimizing for each label L, 
the segmented region is obtained by calculat-
ing maximum probability of the label by:  

 
Li = argmax  (15) 

 
The workflow of the random walker 

method for image I can be summarized as: 
i) Provide a set of marked pixels with L la-

bels corresponding to desired segmenta-
tion regions 

ii) Map the image features such as intensi-
ties, texture information or other image 
features to edge weights and built the 
Laplacian matrix  

iii) Perform the random walker and obtain 
segmentation label for each region. 
In a study comparing different segmenta-

tion methods for positron emission tomogra-
phy (PET) images random walker were 
found to provide the most accurate results 
(Bağci et al., 2011), in case of CT images 
random walker were more accurate than oth-
er segmentation methods such as level sets 
(Chen et al., 2011a) and in case of brain MRI 
random walker performed accurately 
(Choubey and Agrawal, 2012). Figure 5 
shows segmented pathological livers with 
the random walker algorithm and the corre-
sponding probability , it should be noted 
that the values are pixel specific and are 
mapped to gray-scale and displayed for easy 
visualization. 

 
Seed implementation  

After detection of the liver dome, seeds 
are implanted automatically according to the 
position of the liver dome with respect to the 
image. There are up to a total number of 
1200 different seeded pixels for each slice 
with half of them representing the liver and 
the other half representing the other organs 
present in the slice.  

As the liver changes considerably in 
shape and size, it is desired to have an ap-
proximate knowledge of these variations 
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Figure 5: Segmented pathological liver with the random walker algorithm with red line representing 
the segmentation (a,c,e,g) and the corresponding visualized probability (b,d,f,h) with white repre-
senting highest and black representing the lowest probability 
 
 
within a series to be able to implement a 
more robust seeing arrangement. In order to 
determine the approximate size of the liver, 
two slices after the detected liver dome are 
segmented using random walker algorithm. 
After these slices are segmented, the mean 
and the deviation of the intensity variation is 
calculated for these slices, then the right lung 
mask calculated for the slice just before the 
liver dome is used as a template and the rest 
of the CT series are masked based on that. 
Afterward, the number of the pixels falling 
within the pre-calculated liver mean and de-
viation are calculated, the slice with the 
highest number of pixels falling into the cri-
teria is designated as the middle liver slice 
(biggest liver slice) and the slice with the 
lowest number of pixels is designated as the 
last slice, it should be noted that based on 
observations, the number of the pixels in the 
lower parts of the liver are usually around 
100 (experimentally derived on standard 
512×512 CT images), thus the threshold for 
detecting the last slice of the liver is set. This 
middle and last liver slice selection is done 
in order to have more control over the seed-
ing arrangement and avoiding any overlap-
ping of the seeds. 

Datasets 
Data used in this paper is provided by 

medical professionals from cancer imaging 
archive of the Frederick National Laboratory 
for Cancer Research (TCIA dataset, 2016), 
3Dircadb dataset provided by Research Insti-
tute against Digestive Cancer (IRCAD 
dataset, 2016) and The Medical Image Com-
puting and Computer Assisted Intervention 
Society (MICCAI) liver segmentation chal-
lenge (Sliver’07 dataset, 2016). The algo-
rithm is developed on pathological liver im-
ages with varying lesions from the cancer 
imaging archive dataset and then bench-
marked against the Sliver’07 and 3Dircadb 
datasets. It should be noted that the Sliver’07 
and 3Dircadb datasets are only used for 
benchmarking and are not used in the devel-
opment. The developed framework showed 
exceptional accuracy in segmenting liver en-
velope while the typical runtime to segment 
a series of CT images was around 210 sec-
onds. Only patients with pathologies were 
utilized from 3Dircadb data set in this study, 
totaling 15 patients with 120 lesions in total, 
making segmentation a difficult task and a 
good measure of segmentation accuracy, 



EXCLI Journal 2016;15:500-517 – ISSN 1611-2156 
Received: June 25, 2016, accepted: July 13, 2016, published: August 10, 2016 

 

 

508 

Figure 6 illustrates a pathological case from 
3Dircadb dataset. 

 

 
Figure 6: Healthy (left) versus pathological liver 
(right) from 3Dircadb dataset (lesions represent-
ed in green) 

 
In case of dataset acquired from the can-

cer imaging archive, all the patient data is 
confirmed to belong to cancerous cases by 
medical experts, while pixel spacing varied 
from 0.55 to 0.95 mm and slice thickness 
varied from 1 to 5 mm with all patient identi-
fication information removed, it should be 
noted that only contrast enhanced image data 
was utilized from this dataset.  

In the case of Sliver’07 and 3Dircadb da-
tasets utilized in this study for liver segmen-
tation benchmarking, radiological experts 
manually outlined liver contours for all im-
ages on a slice-by-slice basis in order to de-
termine the ground truth. The number of 
slices in each series, the slice thickness and 
the pixel spacing varied from 64 to 502, 0.5 
to 5.0 mm and 0.54 to 0.87 mm respectively. 
The cases involved few healthy cases, but 
most of them are pathologic involving me-
tastasis cysts and lesions of different sizes. 
The image resolution is 512×512 in all cases.  

All internal structures of the liver such as 
vessels and lesions are included in the liver 
mask during manual segmentations. A vessel 
is considered as a part of liver if it is com-
pletely surrounded by liver tissue. If a vessel 
is partially enclosed by the liver (often the 
case where large veins-vena cava and portal 
vein enter or exit the liver), only the parts 
surrounded by liver tissue are included in 
segmentation. In the case of Sliver’07 da-
taset, in order to avoid inconsistency be-
tween transversal slices, a binary median 
filter of 3×3×3 size is performed as a post-
processing step while a single expert exam-
ined the results and corrected them if neces-
sary. In addition to all that, all patient and 
center related information in all the datasets 
were removed prior to making them public. 
The proposed segmentation is applied to the 
Sliver’07 and 3Dircadb datasets consisting 
of 35 series of enhanced CT series. It should 
be noted that the developed framework was 
run with Matlab 2013a on a personal com-
puter with 8 GB of ram and an Intel i7 CPU. 
All the images utilized in this study are pro-
cessed with a window level and settings rec-
ommendations for Abdominal CT imaging 
as illustrated in Figure 7.  

 
Statistical performance measures  

Before any further discussion on the re-
sults, a brief introduction on five statistical 
performance measures utilized are given be-
low, these statistical measures are commonly 
used in image segmentation validation. For 
calculating these statistics we need to con-
sider the following notions: 

 

 
Figure 7: CT image with window level and settings recommendations for Abdominal CT (a), CT image 
with dynamic window level and settings (b) 
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• True Positive (TP), means region seg-
mented as object that proved to be the 
object. 

• False Positive (FP), means region seg-
mented as object that proved not to be 
the object. 

• False Negative (FN), means region seg-
mented as not object that proved to be 
the object. 

• True Negative (TN), means region seg-
mented as not object that proved not to 
be the object. 
 

Volumetric overlap error  
Volumetric overlap error (VOE) ex-

pressed in percent, represents the number of 
pixels in the intersection of segmented re-
gion (A) and the ground truth (B), divided by 
the number of pixels in the union of A and 
B. A value of zero represents perfect seg-
mentation while any increase in this value 
correlates to increased discrepancy between 
segmentation and ground truth. It can be cal-
culated in percent from the following formu-
la: 

VOE=  (16) 

Precision or positive predictive value 
Precision coefficient represents the over-

all performance of the algorithm in correctly 
segmenting the ROI pixels from the image. It 
can be calculated by the following formula: 

Precision = (TP) / (TP+FP) (17) 

Accuracy 
Accuracy coefficient represents the over-

all performance of the algorithm in correctly 
including the pixels of the ROI inside the 
segmentation. It can be calculated by the fol-
lowing formula: 

Accuracy = (TP+TN) / (TP+TN+FP+FN) 
(18) 

The accuracy of a segmentation system is 
the degree of closeness of segmentation to 
the ground truth. The precision of a segmen-
tation system, related to reproducibility and 
repeatability is the degree to which repeated 
experiments under unchanged conditions 

yielding similar results. A measurement sys-
tem can have high accuracy and low preci-
sion or any combinations of those, but a sys-
tem is considered valid if both precision and 
accuracy are high. 

Dice similarity coefficient 
Dice similarity coefficient (DSC) also 

represents the overall performance of the al-
gorithm in correctly including the pixels of 
the ROI inside the segmentation. It can be 
calculated by the following formula: 

DSC = 2×TP / (2×TP + (FP+FN)) (19) 

A value of 0 represents no overlap be-
tween the segmented region and ground truth 
while a value of 1 represents perfect segmen-
tation. 

Relative absolute volume difference 
Relative absolute volume difference 

(RVD) expressed in percent, whereby the to-
tal volume of the segmented region is divid-
ed by the total volume of ground truth. It can 
be calculated by the following formula: 

RVD = ((total volume of segmented region 
total volume of ground truth)) ×100 (20) 

This measure should not be solely uti-
lized to assess the performance of any seg-
mentation method as a value of 0 (perfect 
segmentation) can also be obtained from an 
inaccurate segmentation, as long as the seg-
mented region volume is equal to the volume 
of the ground truth.  

 
R E SUL T S A ND DI SC USSI ON 

The entire algorithm was able to segment 
an average series in 3.5 minutes utilizing a 
typical desktop computer. Average time re-
quired to segment a CT series with a slice 
thickness of 5 mm by an expert is around 30 
minutes thus, our proposed method is ap-
proximately 9 times faster than manual seg-
mentation while providing acceptable levels 
of accuracy. Table 1 represents different sta-
tistical performance measures of the devel-
oped liver envelope segmentation approach 
in comparison to expert radiologist segmen-
tation (ground truth) on Sliver’07 train da-
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taset while Table 2 represents different sta-
tistical performance measures of the devel-
oped approach in comparison to the expert 
radiologist segmentation on pathological liv-
ers from 3Dircadb dataset, it should be noted 
that negative values in RVD represent under-
segmentation and positive values represent 
over-segmentation. Figure 8 illustrates the 
difference in segmentation by the proposed 
method on pathological liver slices com-
pared to radiologist segmentation. 

From the statistical performance view-
point, it can be assumed that the developed 
segmentation framework is amongst the 
more accurate segmentation methods devel-

oped and tested on the liver, achieving com-
parable result with most semi-automatic 
methods (Heimann et al., 2009). In medical 
imaging two of the most accurate measures 
to ensure robustness and relative perfor-
mance of the segmentation accuracy are 
overlap and dice, as these are measured with 
respect to the performance of the segmenta-
tion algorithm in achieving a proper segmen-
tation with respect to the ground truth. In the 
case of Sliver’07 dataset, the proposed seg-
mentation method was able to achieve an av-
erage DSC of 0.94 while the VOE is at 
4.47 %, resulting a good overall average ac-
curacy in extracting the liver envelope. As

 
 
Table 1: Statistical performance of the developed liver envelope segmentation approach in compari-
son to ground truth on Sliver’07 dataset 

 

Case Precision Accuracy VOE in  % RVD in  % Dice 
1 0.9134 0.9925 7.6689 1.284937 0.9186 

2 0.9778 0.992 4.48 -4.23775 0.938 

3 0.9421 0.9954 4.5682 1.383133 0.9497 

4 0.9698 0.9953 3.2375 1.7780258 0.9414 

5 0.8875 0.9894 8.5939 2.365509 0.9128 

6 0.9684 0.9965 2.9586 1.4809957 0.952 

7 0.9205 0.9912 3.7033 4.780923 0.9321 

8 0.9671 0.9972 4.5205 -2.2734277 0.9404 

9 0.97 0.9956 3.9192 0.697662 0.9426 

10 0.962 0.9902 3.008 1.194706 0.9457 

11 0.9674 0.9973 4.5574 3.1339587 0.9537 

12 0.9671 0.9975 3.3015 -1.3685461 0.9278 

13 0.968 0.9973 4.826 2.7975712 0.9525 

14 0.9881 0.9988 4.7822 -3.454183 0.9518 

15 0.8779 0.9903 7.957 3.048222 0.9059 

16 0.9432 0.9931 2.4152 2.871376 0.9555 

17 0.985 0.9958 3.2097 -3.216608 0.9448 

18 0.9807 0.9936 3.6614 -2.643044 0.9447 

19 0.9611 0.995 4.4415 2.531921 0.9482 

20 0.9609 0.999 3.6804 2.224923 0.9478 

Mean 0.9539 0.99465 4.47452 2.3874494 0.9403 
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Table 2: Statistical performance of the developed liver envelope segmentation approach in compari-
son to expert radiologist segmentation on 3Dircadb dataset 

 

 
Figure 8: Examples of segmented liver with the proposed framework, with green line representing 
ground truth and red representing the proposed segmentation 
 

Case Precision Accuracy VOE in  % RVD in  % Dice 
1 0.9227 0.9891 3.2261 0.4034946 0.9364 
2 0.9297 0.9916 8.4768 15.67384 0.9015 
3 0.9839 0.9873 8.7382 -16.15599 0.8751 
4 0.9323 0.9926 3.8129 4.170064 0.918 
5 0.8569 0.9915 7.534 -8.814466 0.9134 
6 0.9856 0.9854 7.0415 12.73032 0.9181 
7 0.965 0.9912 7.2581 -12.7426 0.8991 
8 0.8999 0.993 4.4654 -0.83764 0.9222 
9 0.8876 0.9917 4.8059 -3.896702 0.9233 
10 0.9384 0.9942 4.1002 4.954561 0.9215 
11 0.9093 0.9919 4.0952 -2.301935 0.9363 
12 0.7899 0.989 11.9163 -10.29052 0.863 
13 0.9249 0.9901 4.3628 4.955113 0.9199 
14 0.9486 0.9908 6.8689 14.05408 0.8915 
15 0.9298 0.9943 2.5488 -0.4243885 0.9392 

Mean 0.9203 0.990913 5.950073 7.493714273 0.9119 
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discussed earlier a segmentation method is 
considered valid if both precision and accu-
racy are high, the proposed method was able 
to achieve an average 0.95 and 0.99 in preci-
sion and accuracy respectively, clearly col-
laborating with the result of Dice Similarity 
Coefficient. Average DSC of 0.91 and VOE 
of 5.95 % was the performance of the pro-
posed segmentation algorithm on pathologi-

cal cases over the 3Dircadb dataset with an 
average 0.92 and 0.99 in precision and accu-
racy respectively. Considering that the 
3Dircadb dataset consisted of many lesions 
making automatic segmentation considerably 
more difficult, these results are very promis-
ing. Table 3 compares the developed method 
with some of the more accurate methods 
proposed for liver segmentation.  

 
 
Table 3: Comparison between the developed method and some of the more accurate methods pub-
lished on liver segmentation 

Method Dataset Mean VOE 
in  % 

Mean RVD 
in  % Mean DSC Mean Runtime per 

series (minutes) 

(Maklad et al., 2013), 
semi-automatic Mixed 4.33 ± 0.7 0.28 ± 0.87 No info No info 

(Beichel et al., 2007), 
semi-automatic Mixed 5.2 ± 0.9 1 ± 1.7 No info 36 

(Goryawala et al., 2014), 
semi-automatic 

Pathologi-
cal No info -2.78 ± 0.39 0.92 ± 0.01 No info 

(Li et al., 2014b),  
automatic Healthy 2.7 ± 2 2.8 + 4 No info No info 

(Song et al., 2014),  
automatic No info 4.1 ± 0.67 No info No info No info 

(Mostafa et al., 2015), 
automatic Healthy 6.3 + 2 No info No info No info 

(Shi et al., 2015),  
automatic Mixed 7.05 ± 2.2 1.73 ± 4.33 No info 8.5 

(Kainmüller et al., 2007), 
automatic Mixed 6.1 ± 2.1 -2.9 ± 2.9 No info 15 

(Al-Shaikhli et al., 2015), 
automatic Mixed 6.44±0.6 1.53 ± 1.7 No info No info 

(Wang et al., 2015a),  
automatic Mixed 6.8 ± 2.7 2.7 + 0.9 No info No info 

(Huang et al., 2014),  
automatic Mixed No info No info 0.925 No info 

(Xu et al., 2015),  
automatic Mixed No info No info 0.93 90 

(Li et al., 2014a),  
automatic Mixed No info No info 0.93 ± 0.01 No info 

(Anter et al., 2014),  
automatic Mixed No info No info 0.94 No info 

(Wang et al., 2015b),  
automatic Mixed No info No info 0.94 ± 0.03 1.5 

Proposed method,  
automatic Mixed 4.47 ± 1.7 2.38 ± 2.61 0.94 ± 0.01 3.5 

Proposed method,  
automatic 

Pathologi-
cal 5.95 ± 2.56 7.49 ± 9.63 0.91 ± 0.02 4 

manual segmentation 
(Heimann et al., 2009) Mixed 6.4 4.7 No info No info 
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While preparing the MICCAI challenge 
(Heimann et al., 2009), the organizers ob-
served that liver VOE of 6.4 % was the aver-
age performance of human segmentation 
(with medical training) compared to ground 
truth, thus it can be assumed that the perfor-
mance of a method with an error rate equal 
or smaller than the mentioned 6.4 % is com-
parable to a human operator.  

With a mean VOE of 4.47 % on mixed 
Sliver’07 dataset used by most other meth-
ods in the literature, the proposed segmenta-
tion method is comparable to other devel-
oped methods while the runtime of around 
210-second means that the proposed method 
is viable as an alternative approach to manu-
al segmentation by a radiologist. As dis-
cussed earlier, segmentation of segmentation 
of pathological livers is much more desira-
ble. The proposed method was able to 
achieve a mean VOE of 5.95 % and a mean 
DSC of 0.91 on the very challenging 
3Dircadb dataset while the other method that 
based its segmentation on pathological livers 
was able to achieve a mean DSC of 0.92 by a 
semi-automatic approach on a private da-
taset. Based on these results it can be as-
sumed that the proposed method is compara-
ble to human segmentation performance. 
Compared to most other segmentation ap-
proaches, our approach has the advantage of 
calculating the rib-caged area thus reducing 
the possibility of segmentation leakage and 
the inclusion of the muscle tissue as the liv-
er, thus increasing the segmentation accura-
cy. 

Although the relative volume difference 
(RVD) calculation and determining the liver 
volume is of importance as discussed earlier, 
segmentation algorithms still can achieve a 
high score in this area while being quite in-
accurate as the algorithm can still give accu-
rate volume calculations while the segment-
ed region is widely inaccurate compared to 
the ground truth. This can be also observed 
from the overlap error of different segmenta-
tion methods, as a method with high overlap 

error can have a low relative volume differ-
ence error. Mean RVD of 2.38 % and 7.49 % 
has been achieved for Sliver’07 and 
3Dircadb datasets respectively, making the 
proposed segmentation method comparable 
with other segmentation methods proposed.  

The use of liver location estimation 
based on lungs effectively removes the need 
for any models to estimate the location of 
liver, enabling the random walker segmenta-
tion to segment the liver more accurately. In 
case any lesions are present inside the liver 
envelope, these lesions are also seeded and 
the ability of multi-region segmentation of 
the random walker means that these lesions 
will be also segmented with no regards to 
their location inside the liver, as segmenting 
the pathological livers in contrast-enhanced 
CT imaging are the main reason for taking 
the challenge of liver segmentation. Exam-
ples of challenging pathological livers seg-
mented can be seen in Figure 9.  

These examples represent severe patho-
logical disorders on livers that make segmen-
tation a very challenging task compared to 
the data utilized in Sliver’07 challenge, as it 
can be seen the proposed segmentation algo-
rithm was able to achieve satisfactory re-
sults. The main strength of the random walk-
er algorithm compared to most other seg-
mentation approaches is its ability to seg-
ment pathological livers accurately and with-
in an acceptable time frame as the main goal 
of most liver segmentation methods is to in-
crease the speed and the accuracy of liver le-
sion segmentation. The proposed method re-
quire no training thus removing the influence 
of different datasets on each other as seg-
mentation on each slice is dependent on the 
liver segmentation from the previous slice 
compared to model-based and learning-based 
segmentations where pathological livers with 
large lesions represent the main disadvantage 
(Li et al., 2015; Tibamoso and Rueda, 2009; 
Rusko et al., 2007; Tomoshige et al., 2014; 
Okada et al., 2008). 
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Figure 9: Examples of difficult cases with lesions on liver border segmented using random walker al-
gorithm 

 
After the liver is extracted from the CT 

series, 3D virtualization can be utilized to 
help the physician in better visualizing the 
liver and possible lesions inside the liver, 
this is done as going through a CT series on 
a slice by slice basis is both tedious and 
time-consuming. Figure 10 represents the 3D 
reconstruction of a segmented liver with pa-
thologies.  
 

C ONC L USI ONS 

Proper segmentation of liver envelope is 
the basis for any accurate CAD system uti-
lized in lesion segmentation and classifica-
tion while it is the basis of any surgery plan-
ning as accurate volume calculation and liver 
location visualization is the key in accurate 
prognosis. In this paper, random walker 
based segmentation for the liver envelope is 
proposed with the main goal of segmenting 
pathological livers in contrast-enhanced CT 
images. The proposed framework was 

 
Figure 10: Example of 3D representation of a 
segmented liver by the proposed method (a,b) 
(liver in light green) and the segmented liver with 
visible lesions (c,d) 
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able to achieve a mean VOE of 4.47 % and 
DSC of 0.94 on Sliver’07 dataset resulting in 
a performance comparable with human seg-
mentation while in the case of pathological 
livers from 3Dircadb dataset, the mean over-
lap error was 5.9 % while DSC was 0.91. 
The proposed method is amongst the more 
accurate segmentation frameworks devel-
oped for liver envelope segmentation. Ran-
dom walker has proved to be one of the most 
accurate segmentation approaches especially 
for medical imaging and can provide accu-
rate segmentation in livers containing multi-
ple lesions. Main disadvantage of the pro-
posed method lays in the liver dome detec-
tion and last liver slice detection as some in-
formation might get lost as the algorithm 
might not consider some CT slices on top 
and bottom of the liver, although this affects 
final volume calculation minimally, further 
work can be done in order to enhance this se-
lection of slices. The developed framework 
can also be easily applied to other organs 
within abdomen such as spleen, lungs, aorta 
and kidneys.  
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