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ABSTRACT  

An increasing amount of attention has been geared towards understanding the privacy risks that arise from sharing 

genomic data of human origin. Most of these efforts have focused on issues in the context of genomic sequence 

data, but the popularity of techniques for collecting other types of genome-related data has prompted researchers 

to investigate privacy concerns in a broader genomic context. In this review, we give an overview of different 

types of genome-associated data, their individual ways of revealing sensitive information, the motivation to share 

them as well as established and upcoming methods to minimize information leakage. We further discuss the con-

cise threats that are being posed, who is at risk, and how the risk level compares to potential benefits, all while 

addressing the topic in the context of modern technology, methodology, and information sharing culture. Addi-

tionally, we will discuss the current legal situation regarding the sharing of genomic data in a selection of countries, 

evaluating the scope of their applicability as well as their limitations. We will finalize this review by evaluating 

the development that is required in the scientific field in the near future in order to improve and develop privacy-

preserving data sharing techniques for the genomic context. 
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INTRODUCTION 

Since the introduction of high throughput 

data generation methods, the medical field 

has become increasingly data-driven. Large 

biomedical studies often comprise sampling 

and data generation at different centers, re-

quiring the data to be subsequently shared for 

joint analysis. Though data sharing has thus 

become crucial, the inherently private nature 

of medical data demands caution and elabo-

rate sharing protocols are necessary to ensure 

patient privacy. This is particularly important 

when sharing genomics data and the associ-

ated medical metadata. The concise risks of 
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privacy breaches and the methods used by ad-

versaries vary for different data types. In this 

review, we will assess such risks and tech-

niques in the context of genomic data, more 

precisely, three different data types: genomic 

sequences, transcriptomic and epigenomic 

data. We will further elaborate on currently 

used methods for privately sharing data along 

with different laws that are meant to protect 

individuals in case of a data leak. We will ad-

ditionally introduce current research areas for 

private sharing of genomic data and give an 

outlook on the necessary as well as expected 

changes in the upcoming years. 

 

GENOMIC DATA TYPES 

Traditionally, genomic data (Goodwin et 

al., 2016) refers to data holding information 

on the base sequence in an individual’s ge-

nome. Here, we are going to extend this no-

tion of genomics data to also incorporate tran-

scriptomic as well as epigenomic data, which 

are closely associated with and influenced by 

the genomic sequence (Figure 1a). This 

serves as a more holistic assessment of poten-

tial privacy breaches when working with ei-

ther category of data by evaluating how these 

different data types impact and relate to one 

another and how weak points may translate 

across categories. 

 

Sequence data 

Sequence data contains qualitative infor-

mation, identifying specific bases and their 

positions along the genome. This data type 

describes an individual’s genomic sequence 

to a different extent, depending on the proto-

col underlying the data generation process. 

Whole genome sequencing (WGS) produces 

genomic sequences in their entirety, while 

partial genomic sequencing focuses only on 

particular areas, e.g., exon regions in case of 

whole exome sequencing (WES) (Maróti et 

al., 2018). Even more condensed is sequence 

data storing only single nucleotide polymor-

phisms (SNPs) (Robert and Pelletier, 2018), 

which are specific sites in the genome for 

which different allele frequencies have been 

observed between populations. Despite its 

strongly reduced dimensionality, SNP data 

often allows for accurate genomic fingerprint-

ing of individuals (Lin et al., 2004). 

 

Transcriptomic data 

Unlike sequence data, transcriptomic data 

is of a quantitative nature. It stores infor-

mation on the abundance of RNA transcripts 

in a sample, mostly gene transcripts in the 

form of mRNA, but also other types such as 

long non-coding RNAs or microRNAs. Tran-

script abundances are directly influenced by 

external factors such as environmental stress-

ors, pathogens, or drugs but are also closely 

impacted by the underlying genomic se-

quences. Genomic mutations can change a 

gene’s susceptibility for transcription and are 

therefore indirectly reflected in the tran-

scriptomic landscape. The genomic locations 

that are associated with variation in transcript 

abundances are referred to as expression 

quantitative trait loci (eQTLs) (Nica and 

Dermitzakis, 2013). Transcriptomic data can 

be collected at different levels of resolution: 

more coarse grained data is measured using 

bulk-RNA-sequencing, where transcript 

abundances are measured across many cells, 

which is in contrast to the higher resolution of 

single-cell RNA-sequencing, where tran-

scripts are quantified per cell (Tang et al., 

2009).  

 

Epigenomic data 

Epigenomic data holds information on 

heritable alterations that affect gene expres-

sion but are not based on changes in the ge-

nomic sequence itself (Weinhold, 2006). 

These alterations typically take place on the 

DNA or on histone proteins that are responsi-

ble for binding and condensing the DNA, 

therefore impacting its accessibility for tran-

scription. One important modification on the 

DNA itself is DNA methylation, which com-

monly occurs on cytosine bases that are fol-

lowed by a guanine, so called CpG dinucleo-

tides. These often occur in dense clusters re-
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Figure 1: Brief overview over the contents of this review. a: The three different types of genomic data 
that are covered in this work. A: Adenine; C: Cytosine; G: Guanine; T: Thymine; me: methyl group. b: 
Shown are a selection of applications that encourage data sharing. From left to right: Genomic data 
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sharing is often required when building machine learning models in order to increase the available sam-
ple size required for training. Collecting and enriching data on minorities can reduce subpopulation bias 
in a trained model. Data often needs joining in multiparty studies when it is collected at different sites. 
Other motivators are sharing genomic data to allow the reproducibility of results or to reuse the data for 
new scientific questions. c: The subject re-identification is the core concern in genomic data privacy. 
The ability to produce uniquely identifying Single-Nucleotide-Polymorphism(SNP)-barcodes from the 
data allows an adversary to cross-reference these with public databases, often containing meta infor-
mation that give away sensitive medical information. d: A timeline of selected laws that were introduced 
in several countries to protect citizens from discrimination based on genome-related data. e: Displayed 
are a selection of commonly used data sharing methods, colour-coded based on the maximum level of 
security they can provide. f: Selection of upcoming sharing techniques that are subject of ongoing re-
search. Also shown as a necessary future step is the invocation of globally valid laws to protect subjects 
from discrimination in the case of a security breach. GAN: Generative Adversarial Network; RBM: Re-
stricted Boltzmann Machine; VAE: Variational Autoencoder. 

 

 

ferred to as CpG islands. In general, DNA 

methylation is associated with a reduction of 

gene expression whereas the absence of meth-

ylation promotes RNA transcription. Histone 

modifications are post-translational altera-

tions on histone proteins that affect the his-

tone’s ability to remodel the chromatin. They 

include - among others - methylation and 

acetylation on amino acid rests and impact 

how densely the histone can adhere to the 

DNA (Cazaly et al., 2019). There are other 

levels of epigenomics data that are deter-

mined by sequencing, for example, so-called 

open chromatin regions, regions that can be 

accessed by transcription factors to regulate 

gene transcription. Out of these types of epi-

genetic data, in this review, we will focus on 

DNA methylation data, given that it may be 

directly impacted by changes in the genomic 

sequence. 

 

WHY SHARE GENOMIC DATA? 

In order to assess privacy issues that arise 

when sharing genomic data, there is a need to 

discuss the motivation behind sharing it in the 

first place (Figure 1b).  

Data sharing is required during multi-

party studies, where separate datasets have 

been collected in a decentralized fashion and 

subsequently have to be joined together. Fur-

ther, sharing is required to improve the repro-

ducibility of results by publicly (or on re-

quest) providing the dataset that was used in 

a particular analysis. A set of principles tar-

geting the findability, accessibility, interoper-

ability and reusability of data, particularly by 

machines, was introduced by Wilkinson et al. 

as the FAIR-principles (Wilkinson et al., 

2016). Other scenarios that require data shar-

ing are the reusing of data, in which case da-

tasets are shared for further use in order to an-

swer questions other than those originally 

posed when collecting the data, or sharing for 

reduction of model bias. The latter is espe-

cially important when the data was collected 

from minority groups, in which case public 

accumulation can battle common bias prob-

lems in population-based modeling ap-

proaches (Mehrabi et al., 2019). 

A rather recent development that urges the 

distribution of genomic data is the increasing 

application of machine learning techniques 

(Libbrecht and Noble, 2015). These ap-

proaches typically require a large amount of 

training data, especially in the context of deep 

learning (Eraslan et al., 2019a), as otherwise 

the model tends to bias towards local minima 

that generalize poorly on unseen samples. The 

demand for big data is particularly strong in 

genomics because of its immense feature 

space, and oftentimes exceeds the scope of a 

single study by far, prompting the collection 

of data from multiple studies.  

Moreover, researchers (Brittain et al., 

2017; Dand et al., 2019) and politicians (The 

White House, 2015; BMBF, 2018) alike are 

promoting the advent of personalized medi-

cine to enable the development of treatment 

plans tailored to the individual. To provide the 
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knowledge base for personalized medicine, a 

great wealth of biomedical data, including ge-

nomics data, will have to be generated and 

shared, given that the sampling will have to 

be conducted in a decentralized fashion to 

properly reflect human diversity and the data 

has to be accumulated for subsequent analy-

sis. Given the highly private nature of the 

data, this naturally demands a thorough dis-

cussion on how to guarantee sufficient pri-

vacy compliance. 

 

PRIVACY CONCERNS WHEN  

SHARING DATA  

In light of the aforementioned reasons to 

share genomic data and before introducing 

concrete data sharing methods, the problems 

that arise from privacy breaches in the context 

of genomics must be elucidated. The root of 

these problems and the reason why genomic 

data privacy requires thorough discussion is 

the issue of subject re-identification. Identify-

ing the individual which the data was taken 

from can potentially have severe conse-

quences starting with social issues such as 

stigmatization, which is often observed when 

there is knowledge about the presence of cer-

tain risk alleles in an individual’s genome, es-

pecially in the context of mental health issues 

(Ward et al., 2019). Additionally, known pre-

conditions and increased disease risks can 

negatively affect chances for employment or 

health insurance (Godard et al., 2003). There 

have also been cases where adopted children 

or children received by use of sperm dona-

tions identified their biological parent(s) due 

to publicly available genomic information 

(Erlich and Narayanan, 2014). Another issue 

is posed by the longevity of genomic data: 

given the heritability of genomic and epige-

nomic alterations, re-identification does not 

only pose a risk to the individual itself but 

also to close relatives (Ayday et al., 2015; 

Oprisanu et al., 2019). While all living rela-

tives can - in theory - be asked to give their 

consent to the collection of the data in addi-

tion to the consent given by the individual, 

privacy breaches may also impact unborn rel-

atives or underage relatives whose consent 

cannot be given.  

The risk of re-identification and the corre-

sponding instantiated attack methods are dif-

ferent for the previously introduced data 

types. We will first discuss these with respect 

to sequence data and we will see that most re-

identification risks associated with tran-

scriptomic and epigenomic data fall back onto 

techniques that infer the underlying sequence 

information.  

 

Sequence data 

One particular privacy complication often 

discussed in the context of sequence data is 

SNP “barcoding” or “fingerprinting”. This re-

fers to the observation that a limited number 

of SNPs - 30 to 80 independent SNPs accord-

ing to (Lin et al., 2004) - is sufficient to une-

quivocally identify an individual, therefore 

providing a genome-based fingerprint of that 

person. Following this concept, an attacker 

can construct a SNP fingerprint-library from 

all publicly available sequence datasets and 

identify individuals – given their DNA – by 

checking for matches with fingerprints of 

publicly deposited sequences, which are often 

associated with study metadata that reveals 

some of the individual’s medical information 

(Figure 1c). This scenario raises the question 

of how an attacker would obtain the victim’s 

DNA sequence in the first place. Some exam-

ples here are DNA theft or careless publica-

tion of sequence data. The former is often il-

lustrated by means of the coffee-cup example, 

where a malicious attacker acquires a per-

son’s DNA by collecting it from a thrown-

away coffee cup (Gürsoy et al., 2020). There 

are of course many other ways to steal DNA, 

be it from a tossed-out tissue, blood, or other 

sources as long as they contain intact cells. To 

then go from the sample to the DNA sequence 

is easier than oftentimes assumed, nowadays, 

where companies have specialized in direct-

to-consumer individual genome sequencing 

for a moderate price, often only requiring as 

much as a saliva sample (Eissenberg, 2017). 

The privacy concerns that accompany SNP 
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fingerprinting translate further onto other 

types of genomic data, if the data allows the 

inference of the underlying SNPs. 

A prominent example of the careless pub-

lication of private sequencing data occurred 

during the Personal Genome Project. Here, a 

group from Harvard College demonstrated 

that many of the uploaded, publicly available 

files contain personal information, such as the 

individual’s first and last name that was part 

of the file identifiers after decompression 

(Sweeney et al., 2013).   

But re-identification using sequence data 

does not always have to be part of a malicious 

attack. A rather recent example is the appre-

hension of the “Golden State Killer”, who was 

caught several decades after his first known 

crimes due to the use of consumer genetic da-

tabases. Using the criminal’s sequence data 

and the data available in those databases, the 

investigators reconstructed several family 

trees by pairing the database information with 

public records, ultimately leading to the ap-

prehension through distant relatives who had 

uploaded their genomic sequences (Zabel, 

2019). Though this case of re-identification 

helped to catch a serial killer, it also explicitly 

emphasizes privacy concerns in the context of 

shared genomic sequences. 

There have been cases of deliberate se-

quence data publication in which particularly 

sensitive parts of the genome were removed 

to prevent the individual’s risk assessment 

with respect to certain diseases. A well-

known example is the publication of James 

Watson’s whole genome with the exception 

of the APOE-gene. The gene has been associ-

ated with late onset Alzheimer’s disease – in-

formation that was not meant to be revealed. 

Shortly thereafter, Nyholt et al. (2009) 

demonstrated that the removal of the gene 

alone does not necessarily prevent the accu-

rate prediction of the disease risk posed by 

different alleles of the gene, since these were 

shown to be in linkage disequilibrium with 

other SNPs which had not been removed. 

In cases where publicly available se-

quence data is available in combination with 

corresponding meta information, an individ-

ual’s sequence does not necessarily have to be 

acquired to re-identify the individuals in the 

dataset. This is due to the personal infor-

mation contained in the meta information. 

The risk posed by metadata has been signifi-

cantly mitigated by means of legal regula-

tions, however, free-form text, longitudinal 

data, low sample size (El Emam, 2011), and 

non-random generation of accession numbers 

(Erlich and Narayanan, 2014) have been 

shown to remain problematic.  

A thorough review of the requirements for 

secure genomic sequence sharing, storing, 

and testing methods is provided by Ayday et 

al. (2015). 

 

Transcriptomic data 

Already in 2012, Schadt et al. demon-

strated how to infer an individual’s genotype 

at eQTL positions and therefore to SNP-fin-

gerprint the individual using a Bayesian ap-

proach that solely relied on publicly available 

data on putative cis-eQTLs and RNA expres-

sion data (Schadt et al., 2012). They pointed 

out that this is particularly problematic given 

that gene expression data is commonly as-

sumed to allow too little insight into a study 

participant’s genomic sequence to reveal their 

identity and has therefore been shared pub-

licly on platforms such as ArrayExpress and 

Gene Expression Omnibus, while sequence 

data is held under controlled access. How-

ever, if contrary to common belief, gene ex-

pression data does allow SNP-fingerprinting, 

then the publicly available data for building a 

SNP-fingerprint library for re-identification 

attacks mentioned in the sequence section 

above is expanded from publicly accessible 

sequence data to both sequence data and gene 

expression data, resulting in a much larger 

pool of individuals at risk of re-identification. 

The paper was reviewed by Erlich and Nara-

yanan (2014) who concluded that the threat 

posed to individuals whose gene expression 

data has been published is low. This conclu-

sion was based on the fact that the Bayesian 

method introduced by Schadt et al. only per-
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formed well when the eQTL data and gene ex-

pression data were measured on the same 

platform, while at the time both sequencing 

on microarray and Next Generation Sequenc-

ing (NGS) were common, making many of 

the datasets incompatible for the inference ap-

proach. In 2017, however, Lowe et al. (2017) 

showed that the use of RNA-seq surpassed 

that of microarrays in 2016, showing increas-

ing trends for RNA-seq while microarray 

publications decreased further in count. Cor-

chete et al. (2020) referred to RNA-seq as the 

“first choice in transcriptomic analysis” in 

2020. Thus, while being reasonable at the 

time, the argument that platform heterogene-

ity hinders phenotype inference in many cases 

progressively loses its validity when the se-

quence data landscape becomes increasingly 

homogeneous. Erlich and Narayanan further 

argued that the amount of public gene expres-

sion data to be downloaded and processed by 

an adversary to generate the SNP barcodes re-

quires immense computational power render-

ing it an unlikely endeavor. Putting this into 

today’s perspective, with the currently availa-

ble hardware, new compute architectures 

(Becker et al., 2020), and cloud space for rent, 

this argument as well requires reassessment. 

This emphasizes the need for re-evaluation of 

the re-identification risk posed by the method 

proposed by Schadt et al. considering the 

technological changes that have occurred 

since its original publication. The computa-

tional feasibility of SNP-fingerprinting entire 

databases such as GEO would enable an at-

tacker to test whether a given individual – 

e.g., crime suspect, victim of DNA theft, per-

son with public genome sequence – is part of 

a study in which the gene expression data has 

been published. Gene expression data could 

then also be utilized for associating individu-

als with certain traits such as BMI, sex, age, 

insulin levels and glucose levels (Schadt et 

al., 2012) or to match individuals of one study 

with those of another, creating cross-links that 

potentially reveal further meta information on 

an individual. These genotype-phenotype 

linking attacks have been assessed in more 

detail by (Harmanci and Gerstein, 2016), urg-

ing to use methods to quantify private infor-

mation leakage before publishing a dataset. 

 

Epigenomic data 

The methylation of DNA is measured us-

ing bisulfite conversion. Here, DNA is treated 

with sodium bisulfite which does not impact 

methylated Cytosines (C) but converts un-

methylated ones into Uracil (U). Adenine (A), 

Guanine (G) and Thymine (T) are not af-

fected. C/T-SNPs, i.e. SNPs where a C was 

changed to a T, are the most common transi-

tions in human genomes (LaBarre et al., 

2019) and they can change a CpG dinucleo-

tide into a TpG dinucleotide. These SNPs of-

ten induce a three-tier pattern in the measured 

methylation according to homozygous TpG 

individuals with low, heterozygous CpG/TpG 

individuals with medium and homozygous 

CpG individuals with high methylation sig-

nals. Similar effects could be observed with 

C/A or C/G mutations (Philibert et al., 2014; 

Daca-Roszak et al., 2015). Based on these tri-

modal patterns, LaBarre et al. developed a 

method that recognizes C/T-SNPs in methyl-

ation data and subsequently removes them. 

However, the three-tier patterns could also re-

sult from differential methylation rather than 

underlying genotypes, and SNPs in CpGs that 

are always unmethylated are unlikely to be 

detected, since it is not possible to distinguish 

between a C/T-SNP and a C that is converted 

to a T during bisulfite conversion.  

In 2019, Hagestedt et al. showcased an ef-

fective membership inference attack on DNA 

methylation data, i.e., inferring the presence 

of an individual in a genomic dataset, disclos-

ing the privacy risks posed by their public re-

lease (Hagestedt et al., 2019). They further in-

troduced MBeacon, a platform where re-

searchers can query DNA methylation data 

deposited at Beacon sites with regard to 

whether or not they contain samples with spe-

cific methylation. MBeacon was designed us-

ing a privacy-by-design approach, substan-

tially decreasing the success of membership 

inference attacks while maintaining a decent 

level of data utility. 
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Besides the potential inference of the un-

derlying genotype, another privacy concern 

was raised by Philibert et al. (2014). They 

claim that the methylation status of an indi-

vidual at specific sites could be used to infer 

the smoking status and alcohol consumption 

of the individual. A response was issued in 

2015 by Joly et al. (2015), members of the In-

ternational Human Epigenetic Consortium 

(IHEC), criticizing that the prediction of 

smoking status was not accurate enough to 

give reliable results and that the risk of re-

identification is low in the absence of access 

to the corresponding genomic sequence infor-

mation. Dyke, together with other authors that 

also participated in the response letter of Joly 

et al., issued a study that year which illustrates 

the inference of SNPs from DNA-methylation 

data using imbalances in methylation signal 

from forward and reverse strands when the 

data was collected using strand-specific 

Whole Genome Bisulfite Sequencing 

(WGBS) (Dyke et al., 2015). They emphasize 

that the risk of re-identification is low but may 

be increased in combination with meta infor-

mation on the individual’s demographic or 

health status, especially in the case of rare dis-

ease phenotypes. To maximize the privacy of 

participants in DNA-methylation studies, the 

authors ask for a more synchronized metadata 

vocabulary, in order to avoid different levels 

of information being revealed by different au-

thors based on the descriptors they used. They 

also recommend that CpGs overlapping 

known SNPs are removed from DNA-meth-

ylation data prior to publication and offer a 

list of questions to consider to protect people 

with rare diseases in particular. 

Berrang et al. provided a privacy risk as-

sessment spanning different types of genomic 

data along a temporal axis and between re-

lated individuals (Berrang et al., 2018). They 

demonstrated a Bayesian framework that uti-

lizes correlations present between different 

data types to infer the values of one data type, 

using the information from another, e.g., in-

ferring the methylation pattern from sequence 

data and vice versa.  

LAWS AND LIMITATIONS 

Many countries have developed sophisti-

cated laws and guidelines to protect individu-

als from misuse of their genomic information 

(Figure 1d). However, the wording is often 

ambiguous towards the different types of ge-

nomic data and has therefore prompted re-

searchers to question their validity in particu-

lar situations.  

For example, the German “Gendiagnostik-

gesetz” prohibits discrimination of citizens 

based on their genetic characteristics. Genetic 

characteristics are here defined as inherited or 

between conception and birth acquired hered-

itary information of human origin (Deutscher 

Bundestag, 2009). This unambiguously co-

vers genomic sequence information as it is 

present at birth. It is unclear, however, if this 

also covers quantitative gene expression in-

formation which can be affected by the envi-

ronment and not only by underlying sequence 

information. Further, if it covers epigenomic 

data, which is often altered by environmental 

factors and therefore can be lost or acquired 

after birth and is not necessarily inherited. 

Lastly, if it also refers to genomic sequence 

information that has changed after birth, e.g., 

mutations due to external stimuli such as UV-

radiation. The law also states that it does not 

apply to genetic examination and analyses 

and the handling of genetic samples and data 

for the purpose of research. The Council of 

Europe had previously issued a convention in 

1997 that prohibits “any form of discrimina-

tion against a person on grounds of his or her 

genetic heritage”, where the term genetic her-

itage is not defined further. This convention 

was signed and ratified by 29 countries 

(Council of Europe, 1997). In the United 

States, a similar effort has been made to pro-

tect citizens from discrimination in health in-

surance and employment based on genetic in-

formation by introducing the Genetic Infor-

mation Nondiscrimination Act (GINA) (U.S. 

Equal Employment Opportunity Commis-

sion, 2008). Genetic information is here de-

fined as information on an individual’s ge-

netic test, genetic tests of their family mem-
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bers and diseases or disorders that have man-

ifested in family members of the individual. 

A genetic test is defined as “an analysis of hu-

man DNA, RNA, chromosomes, proteins or 

metabolites, that detects genotypes, muta-

tions, or chromosomal changes”. This defini-

tion leaves the same questions unanswered as 

above. Additionally, it explicitly excludes the 

U.S. military from the list of employers that 

are prohibited to use genetic information as 

well as any employer with less than 15 em-

ployees.  

In addition to GINA, disclosure of health 

information is regularized by the Health In-

surance Portability and Accountability Act 

(HIPAA). It provides three standards for the 

disclosure of patient health data that do not re-

quire authorization by the patient. Those three 

standards are the Safe Harbor standard, the 

Limited Dataset standard, and the statistical 

standard (El Emam, 2011). Safe Harbor regu-

lates the de-identification of health data by re-

moving 18 different identifying elements, 

among those the name, certain geographic in-

formation, all elements of dates except for the 

year, phone and fax numbers, e-mail ad-

dresses, social security numbers, and many 

more (El Emam, 2011). The Limited Dataset 

standard only removes 16 potential identifiers 

but additionally requests a data sharing agree-

ment between data custodian and data recipi-

ent and the statistical standard requires expert 

evaluation and classification of the de-identi-

fication risk as very small (El Emam, 2011). 

Given its clarity and simplicity, Safe Harbor 

is often referred to for data de-identification. 

However, as pointed out by El Emam, not 

only does it often result in the removal of in-

formation that could have been useful for the 

data evaluation, it also does not sufficiently 

ensure the protection of the individual with 

regard to re-identification. In this context, 

there is special emphasis on the lack of pro-

tection through genetic data, such as SNPs, 

longitudinal data, widely used diagnosis 

codes, sampling size, and free-form text. A 

more detailed elaboration can be found in El 

Emam (2011). 

In 2018, major advancements have been 

made in the EU with respect to data protection 

due to the release of the General Data Protec-

tion Regulation, GDPR (European Union, 

2018; Shabani and Borry, 2018). It applies in 

all EU member states and aims to unify data 

protection across countries. GDPR over-

comes the ambiguous definition of genetic 

data as outlined above by defining it as “per-

sonal data relating to the inherited or acquired 

genetic characteristics of a natural person 

which give unique information about the 

physiology or the health of that natural person 

and which result, in particular, from an anal-

ysis of a biological sample from the natural 

person in question” (“Recital 34 - Genetic 

data - GDPR.eu,” 2018). This definition in-

cludes the wide range of modern genomics 

data types and therefore offers more thorough 

protection from open sharing and un-con-

sented processing than the regulations dis-

cussed above. While passed in the EU, the law 

applies worldwide if the data that is processed 

was sampled from a citizen of an EU member 

state. 

Additional EU guidelines have been intro-

duced recently that specifically aim to protect 

EU citizens from threats posed by Artificial 

Intelligence (AI) systems. The “Assessment 

List for Trustworthy Artificial Intelligence” 

(ALTAI) was published by the European 

Commission in 2020 as a guideline for the de-

velopment of trustworthy AI (European Com-

mission, 2020). Early in 2021, the European 

Commission additionally published a draft of 

the Artificial Intelligence Act (AIA) (Euro-

pean Commission, 2021). Subject to this act 

is any provider of AI applications worldwide, 

if those applications are used by EU citizens. 

It categorizes AI systems into different cate-

gories of threat, connected with strict obliga-

tions that have to be met by the provider. 

These regulations also address AI used in the 

health context, therefore including genomic 

data. While the motivation behind these 

guidelines and regulations is most reasonable, 

there are some concerns regarding the impli-

cations they might have on data privacy. This 

is particularly important because they demand 
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the models to be fair and unbiased by using 

representative, non-discriminatory and com-

plete training, validation and test datasets. 

However, in order to test a model’s fulfill-

ment of these requirements, the inspecting au-

thority is likely to need access to the datasets, 

which – e.g., in the context of genomic data – 

are often highly private. 

 

RISK-BENEFIT CONSIDERATIONS 

When assessing privacy risks, it is always 

essential to weigh the risk of an individual 

against the possible gain that is associated 

with the vulnerable position the individual 

finds themself in. The group of individuals 

that was – and in many scenarios still is – the 

main target groups for genomic data collec-

tion are those that have a personal reason to 

participate in the respective studies, e.g., a 

difficult-to-treat or poorly researched disease 

(Esplin et al., 2014). For these individuals, the 

potential gain that comes from participating in 

these studies often substantially outweighs 

the risk of re-identification. But the focus of 

the target group appears to gradually shift, 

people have started to have their genome se-

quenced out of curiosity rather than acute 

medical reasons and the field of personalized 

medicine advocates genomic data collection 

to become part of a medical care routine (Brit-

tain et al., 2017; Suwinski et al., 2019). There-

fore, the group at risk of re-identification is 

bound to change from those that have a high 

benefit-risk ratio to a more heterogeneous 

population. Additionally, the risk of cross-ref-

erencing genomic data and metadata to nar-

row down the set of individuals a data in-

stance potentially belongs to, is likely to in-

crease due to oversharing of personal infor-

mation on social media, be it voluntary or in-

voluntary. This can start with information as 

subtle as height, sex, and weight which can be 

inferred from pictures, geotags, and dates that 

put an individual into close spatial and tem-

poral proximity of the conduction of a given 

study, and it can go as far as people openly 

sharing their health status or study participa-

tion. This can be expected to substantially in-

crease the risk of re-identification and it is an 

issue that has lacked thorough attention in 

prior risk-evaluation strategies. 

 

ESTABLISHED DATA SHARING 

TECHNIQUES 

Current data sharing techniques come at 

different levels of security, as is illustrated in 

Figure 1e. As discussed above, some data 

types are often shared publicly in plain text 

without restrictions other than de-identified 

sample descriptors. This is the case when the 

risk of re-identification for the participants is 

considered minimal. Genomic data with in-

creased re-identification risk such as se-

quence data or data that gives direct infor-

mation on partial sequences (reads, SNPs) are 

published under controlled access. In this sce-

nario, the legitimacy of an access request is 

evaluated based on the applicant’s personal 

information and the research project the data 

is intended to be used for. The use of the data 

also often comes with a series of constraints 

that regard a safe storing location, no sharing 

and no re-identification attempts. While there 

is still a lack of true oversight with respect to 

whether or not the data is shared after down-

loading, another controlled access strategy is 

to not allow the data to be downloaded but in-

stead run protocolled queries on the data and 

only retrieve the results. This may severely re-

strict the flexibility with which the data can be 

analyzed (Erlich and Narayanan, 2014).  

To decrease the risk of subject identifica-

tion, be it in publicly shared or controlled-ac-

cess data, efforts are made to de-identify the 

data, i.e., to remove information or reduce its 

granularity such that identification of the in-

dividual becomes very unlikely. A common 

set of guidelines for de-identification is the 

mentioned Safe Harbor standard included in 

the HIPAA Privacy Rule.  

Gürsoy et al. developed a method that san-

itizes the raw reads underlying gene expres-

sion data such that sharing with reduced re-

identification risk is possible, while keeping 

the necessary data manipulation minimal 

(Gürsoy et al., 2020). They achieve this by 

transforming the original BAM file into a san-

itized file, where information that reveals the 
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presence of a variant (SNPs, insertions, dele-

tions) is masked. For instance, information on 

variants as it is contained in reads is removed 

by replacing the called base at the site of the 

variant with that present in the reference ge-

nome. The true values of the sanitized ele-

ments are stored in a separate file which is 

meant to be under controlled access. This al-

lows for sharing of the sanitized data while 

being able to reconstruct the original if access 

to the additional file is granted, though no for-

mal or statistical guarantees on privacy are 

provided. 

Classical encryption approaches have 

been leveraged as well to enable secure shar-

ing of genomics data. One example is the 

crypt4gh file format introduced in 2019 by the 

Global Alliance for Genomics and Health 

(GA4GH) (“GA4GH File Encryption Stand-

ard,” 2019). The format allows the genomic 

data to be encrypted while in storage, in 

transit, during reading and writing. It uses 

symmetric encryption as well as public-key 

encryption, it is confidential in the sense that 

it is only readable by holders of a secret de-

cryption key, but it does not obscure the 

length of the file. The data is stored in blocks, 

the integrity of which is ensured using mes-

sage authentication codes, however, blocks 

can be rearranged, removed, or added. Au-

thentication of files encrypted with this 

method is not provided. Though as with any 

system that relies on secret decryption keys, 

privacy is lost in the case of a system breach 

that results in an untrusted party acquiring the 

key.  

Others have explored fully homomorphic 

encryption (FHE) to securely operate on ge-

nomic data. FHE allows to conduct computa-

tions on the genomic data while it remains in 

its encrypted state, receiving the encrypted re-

sults and decrypting them with a personal key 

(Erlich and Narayanan, 2014). This allows for 

secure computations on cloud systems even if 

the system itself is not. While this approach 

was long assumed too computationally ex-

pensive to be reasonable in the context of ge-

nomic data, Blatt et al. recently presented an 

improvement in run-time of FHE for Genome 

Wide Association Studies (GWAS) by intro-

ducing parallelization and crypto-engineering 

optimizations, which allegedly outperforms 

secure multiparty computations (SMPC) 

(Blatt et al., 2020). SMPC is another approach 

to secure computation, in which two or more 

parties that hold private data can compare and 

perform computations on the data without 

ever revealing the data itself to the other party 

or another third party (Erlich and Narayanan, 

2014). While a prominent point of criticism 

with SMPC models is the oftentimes exten-

sive communication required between com-

puting parties, Cho et al. demonstrated an ap-

proach for SMPC in GWAS in which run-

time scaled linearly to the number of samples 

and was reduced to 80 days for 1 million in-

dividuals and 500,000 SNPs (Cho et al., 

2018). Though this is still a substantial 

amount of time, efforts such as this have 

worked on optimizing the procedure in the 

past years. However, in the case of Cho et al., 

the privacy guarantee only holds for the semi-

honest security model, in which participants 

are assumed to not deviate from the conduc-

tion protocol.  

Besides homomorphic encryption and 

multi-party computing, there are also hard-

ware-based approaches to handling sensitive 

information such as genomic data. An exam-

ple is the Intel Software Guard Extension 

(SGX), which has also been used in combina-

tion with homomorphic encryption on GWAS 

data (Sadat et al., 2019). While such tech-

niques based on SGX can also be used to pro-

tect model and/or data (Hanzlik et al., 2021), 

implementations of SGX however have been 

troubled with serious security issues them-

selves (Van Bulck et al., 2018; Lipp et al., 

2021). 

Another widely applied concept to allow 

privacy preserving data analysis is that of Dif-

ferential Privacy (DP) (Dwork and Roth, 

2014). The idea behind DP is to allow private 

data analysis by assuring that the addition or 

removal of a subject to or from the dataset 

does not significantly alter potential query re-

sults and therefore does not disclose whether 

or not the individual is part of the dataset. To 

https://sciwheel.com/work/citation?ids=10987456&pre=&suf=&sa=0
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achieve this, different levels of noise have to 

be added to the data before its release, where 

the amount of noise necessary increases when 

the sample size of a dataset decreases. The 

privacy loss of the noised dataset is quantified 

using the epsilon parameter, where a value of 

0 indicates total privacy, though decreasing 

values come with increasing added noise and 

therefore less utility. In contrast to security 

measures, cryptography or privacy heuristics, 

DP comes with strong guarantees that are not 

susceptible to misuse of the system or typical 

breaches. Although privacy preserving and 

statistical analyses do not follow an adverse 

goal, today's techniques are often affected by 

a reduced utility of the analysis. For an ex-

haustive review of privacy-enhancing tech-

nologies in the genomic context, please refer 

to the work done by Mittos et al. (2019). 

 

CURRENT RESEARCH AND  

FUTURE VISION 

Sharing-free solutions 

In the machine learning domain, increas-

ing interest has been focused on developing 

solutions that do not require data to be shared 

but that store the data locally and have the 

model migrate instead, performing local train-

ing and only sharing updated model parame-

ters (Figure 1f). The most prominent sharing-

free learning framework is federated learning 

(FL), whose advantages and major open prob-

lems have been discussed thoroughly in re-

cent works (Kairouz et al., 2019; Rieke et al., 

2020). FL is a general learning paradigm that 

can be built on top of various training algo-

rithms, with no restriction on the adopted 

model architecture, therefore offering a broad 

application spectrum spanning across diverse 

data modalities. There have been isolated use 

cases in the health sector, such as FL for pre-

dictions based on electronic health records 

(Brisimi et al., 2018; Xu et al., 2021), medical 

images (Sheller et al., 2019; Li et al., 2020) 

and compound-protein-binding data (Rieke et 

al., 2020). However, a broad application has 

so far been hindered by technical obstacles 

such as the requirement for a somewhat stand-

ardized data format that the different sites ad-

here to, different hard- and software environ-

ments, and most importantly, related privacy 

issues. While FL advertises inherent data se-

curity by leaving the data in place, potential 

information leakages could originate in the 

transmission of model parameter updates and 

threats are posed by the untrusted central 

server that receives and combines the local 

model updates reported by each site. For ex-

ample, untrusted servers are shown vulnera-

ble to attacks that reconstruct raw user data 

from the parameter updates sent by local cli-

ents (Zhu and Han, 2020). To minimize the 

potential privacy risk posed by a vulnerable 

centralized server, efforts have been made to 

explore fully decentralized (peer-to-peer) to-

pologies where no central server is required. 

One completely new data-sharing free ap-

proach combining peer-to-peer functionality 

using blockchain technology with AI is 

swarm learning (SL) (Warnat-Herresthal et 

al., 2021). In particular, SL addresses the is-

sue of untrusted participants by registering 

and authorizing all participating sites via 

blockchain technology in a swarm network. 

 

Synthetic data 

Another ongoing attempt to boost patient 

privacy when sharing genomics data is the use 

of synthetic data instead of the original data. 

The idea behind this is to create a synthetic 

cohort that follows a similar distribution as 

the original cohort, producing accurate ana-

lytical results while protecting patient privacy 

by generating novel samples distinct from the 

original data (Figure 1f). In this regard, re-

searchers have utilized the concept of genera-

tive modeling, applying for example Re-

stricted Boltzmann Machines (RBMs) (Hin-

ton et al., 2006) or Generative Adversarial 

Networks (GANs) (Goodfellow et al., 2014; 

Yelmen et al., 2021). Though not with the 

goal to create entire synthetic datasets, varia-

tional autoencoders (VAEs) (Kingma and 

Welling, 2013) have been used to impute 

missing counts in single-cell expression data 

(Eraslan et al., 2019b; Qiu et al., 2020) as well 

as in bulk-RNA sequencing and methylome 

https://sciwheel.com/work/citation?ids=11203719&pre=&suf=&sa=0
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data (Qiu et al., 2020). However, this research 

is still in its infancy and requires thorough as-

sessment with respect to both the utility and 

the privacy properties of the generated data. 

Conventionally, generative models are evalu-

ated along three fronts: (1) fidelity – whether 

the generated samples can faithfully represent 

real data; (2) diversity – whether the gener-

ated data is diverse enough to cover the vari-

ability of real data; and (3) generalization – 

whether the generated samples are merely 

copies of real data, i.e., the model overfits and 

memorizes training data (Alaa et al., 2021). 

The privacy property started to be considered 

and investigated in recent works, mostly in 

the form of membership inference attacks. 

Specifically, Hayes et al. introduce member-

ship inference attacks against GANs trained 

on image data (Hayes et al., 2019; Hilprecht 

et al., 2019) and a systematic analysis has 

been conducted by Chen et al. (2020b). They 

assess an attacker’s ability to infer the pres-

ence of a given sample in the GAN’s training 

set with respect to different threat models, da-

taset sizes, and GAN model architectures. 

They show that membership inference is fa-

cilitated if the training dataset is small, which 

they explain by the GAN’s inability to gener-

alize and instead memorize. This could be an 

especially limiting factor in the generation of 

synthetic genomics data since the real data 

available for training is often limited, espe-

cially in the human context, emphasizing the 

need for privacy risk assessment prior to the 

public release of the synthetic data or trained 

models.  

Recently, Oprisanu et al. extended the in-

vestigation of GANs’ privacy properties to 

genomic sequence data (Oprisanu et al., 

2021). Generally, more research is necessary 

to improve the utility of generative models 

while avoiding information leakage and to de-

ploy them to genomics data other than se-

quences.  

Other work has focussed on private deep 

learning in general (Abadi et al., 2016) and 

GANs in particular (Xie et al., 2018; Beau-

lieu-Jones et al., 2019; Frigerio et al., 2019; 

Torkzadehmahani et al., 2019) over the past 

years, among those a recent publication that 

addresses privacy issues when sharing sensi-

tive data or when sharing generators trained 

on such data and proposes the training and re-

lease of differentially private generators in-

stead (Chen et al., 2020a). They further illus-

trate how the approach can naturally adapt to 

a federated learning setting. The differential 

privacy is achieved by restraining the impact 

a single sample can have on the fully trained 

model by using differentially private stochas-

tic gradient descent during the training proce-

dure. They further tackle the utility-privacy 

tradeoff by only training the generator - which 

may subsequently be publicly released - in a 

differentially private manner while training 

the discriminator optimally, therefore not dif-

ferentially private and discarding it after-

wards. Additionally, they demonstrate the 

value of the approach in a decentralized learn-

ing context such as in federated learning ap-

proaches. One of the main benefits of a differ-

entially private generator and the obtained 

samples is that such synthetic data can be ac-

cessed without further privacy costs, while, in 

contrast, differentially private analysis of data 

needs to keep track of the incurred privacy 

cost. Also, established tools can be used on 

such synthetic data, while conventional dif-

ferential private analysis typically needs to 

adapt the whole toolchain. 

 

Protecting privacy and preventing  

discrimination 

Beyond these research-based approaches, 

more appropriate laws are required world-

wide. There needs to be active exchange be-

tween the scientific community - particularly 

medical and life science researchers as well as 

scientists from the fields of data privacy and 

data security - and the lawmakers to ensure 

that the regulations are up to date with the sci-

entific progress and that their phrasing is less 

ambiguous. The terminology as it is now is 

often outdated or kept too broad to be a good 

guidance for researchers and to successfully 

protect study participants. In a rapidly evolv-

ing field such as this, regular risk assessments 

and revision of laws based on correspondence 
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with active researchers of the topic is inevita-

ble. Clear and thorough laws against genome-

based discrimination are particularly im-

portant since protecting an individual’s pri-

vacy can, in practice, oftentimes not be fully 

assured, simply due to the fact that technolo-

gies and methods available to attackers in the 

future can only be speculated about. There-

fore, it is even more important to instantiate 

laws that explicitly prevent discrimination in 

the case of data leakage, to provide a fail-safe 

system in cases where privacy protecting 

measures fall short (Figure 1f). First steps into 

this direction have already been made by 

means of the GDPR, ALTAI and AI Act as 

outlined above. 

 

CONCLUSION 

Putting the risks of re-identification using 

genomic sequence data into perspective, data 

privacy is a concern that needs to be taken se-

riously. At this point in time, while all the 

above-mentioned methods are eligible 

threats, the costs involved and the expertise 

needed are still rather high and one could 

wonder, how realistic the threat really is. But 

as always in the field of data security and pri-

vacy, it is not only important to assess what is 

but also what potentially will be. While today, 

the motivation to acquire the genomic se-

quence of most people is considerably low 

given the entailed costs and effort, further de-

crease in sequencing price, increased insight 

into the genome and better computing perfor-

mance are likely to make it more attractive in 

the future. The future in mind, present day sci-

entists are required to address the issues of ge-

nomic data privacy to assure responsible re-

search. This entails active communication 

with lawmakers to provide non-discrimina-

tion laws that protect study participants in the 

case of data leakage and which are up to date 

with the science. Further, increased collabo-

ration of data security and privacy researchers 

with life scientists is essential to develop pri-

vacy-preserving data sharing techniques that 

are specifically tailored to genomics data in 

the near future. In this context, we can expect 

an increased necessity for bioinformaticians, 

computational biologists, biomathematicians, 

and others to optimally communicate the 

needs of the genomics community to com-

puter scientists, in order to enable easier, yet 

secure sharing of genomic data.  
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