Osteogenic differentiation of mesenchymal stem cells cultured on PLLA scaffold coated with Wharton's Jelly

Authors

  • Marziehsadat Ahmadi Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Iran
  • Ehsan Seyedjafari Department of Biotechnology, College of Science, University of Tehran, Iran
  • Seyed Jalal Zargar Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Iran
  • Gebremariam Birhanu Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran, Iran; School of Pharmacy, College of Health Sciences, Addis Ababa University, Ethiopia
  • Ali Zandi-Karimi Department of Biotechnology, College of Science, University of Tehran, Iran
  • Bahareh Beiki Department of Biotechnology, College of Science, University of Tehran, Iran
  • Kadriye Tuzlakoglu Department of Polymer Engineering, Yalova University, Turkey

DOI:

https://doi.org/10.17179/excli2016-741

Keywords:

Wharton's Jelly, poly-L-lactic acid, coating, electrospinning

Abstract

Poly-L-lactic acid (PLLA) electrospun nanofiber scaffold is one of the most commonly used synthetic polymer scaffolds for bone tissue engineering application. However, PLLA is hydrophobic in nature, hence does not maintain proper cell adhesion and tissue formation, moreover, it cannot provide the osteo-inductive environment due to inappropriate surface characteristic and the lack of surface motives participating in the first cellular events. To modify these shortcomings different approaches have been used, among those the most commonly used one is coating of the surface of the electrospun nanofiber with natural materials. In this work Wharton's jelly (WJ), a tissue which surrounds the umbilical cord vessels, reaches in high amounts of extracellular matrix (ECM) components mainly; collagen, hyaluronic acid and several sulphated glycosaminoglycans (GAGs) were used to cover the surface of electrospun PLLA nanofiber scaffolds. The surface morphology of the nanofiber scaffold was evaluated via scanning electron microscope, and the in vitro osteogenic differentiation potential was determined by MTT assay and common osteogenic marker tests such as alkaline phosphatase (ALP) activity and calcium deposition tests. Coating of WJ could not change the surface morphology and diameter of the nanofibers. However, WJ-PLLA scaffolds showed higher proliferation of human mesenchymal stem cells (MSC) than tissue culture plate (TCP) and pristine PLLA scaffolds, moreover, WJ-PPLA scaffold demonstrated significant alkaline phosphatase activity and calcium mineralization than either TCP or PLLA nanofiber scaffolds.

Published

2017-05-23

How to Cite

Ahmadi, M., Seyedjafari, E., Zargar, S. J., Birhanu, G., Zandi-Karimi, A., Beiki, B., & Tuzlakoglu, K. (2017). Osteogenic differentiation of mesenchymal stem cells cultured on PLLA scaffold coated with Wharton’s Jelly. EXCLI Journal, 16, 785–794. https://doi.org/10.17179/excli2016-741

Issue

Section

Original articles

Most read articles by the same author(s)