## Supplementary information to:

## **Original article:**

## HYPERMETHYLATION OF *RAD9A* INTRON 2 IN CHILDHOOD CANCER PATIENTS, LEUKEMIA AND TUMOR CELL LINES SUGGEST A ROLE FOR ONCOGENIC TRANSFORMATION

Danuta Galetzka<sup>1</sup>, Julia Böck<sup>2,15</sup>, Lukas Wagner<sup>14</sup>, Marcus Dittrich<sup>3</sup>, Olesja Sinizyn<sup>1</sup>, Marco Ludwig<sup>4</sup>, Heidi Rossmann<sup>5</sup>, Claudia Spix<sup>6</sup>, Markus Radsak<sup>7</sup>, Peter Scholz-Kreisel<sup>8</sup>, Johanna Mirsch<sup>9</sup>, Matthias Linke<sup>10</sup>, Walburgis Brenner<sup>11</sup>, Manuela Marron<sup>12</sup>, Alicia Poplawski<sup>13</sup>, Thomas Haaf<sup>2</sup>, Heinz Schmidberger<sup>1</sup>, Dirk Prawitt<sup>14</sup>

- <sup>1</sup> Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
- <sup>2</sup> Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- <sup>3</sup> Bioinformatics Department, Julius Maximilians University, Würzburg, Germany
- <sup>4</sup> DRK Medical Centre, Alzey, Germany
- <sup>5</sup> Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre, Mainz, Germany
- <sup>6</sup> Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
- <sup>7</sup> Department of Hematology, University Medical Centre, Mainz, Germany
- <sup>8</sup> Federal Office of Radiation, Neuherberg, Germany
- <sup>9</sup> Radiation Biology and DNA Repair, Technical University of Darmstadt, Germany
- <sup>10</sup> Institute of Human Genetics, University Medical Centre, Mainz, Germany
- <sup>11</sup> Department of Obstetrics and Women's Health, University Medical Centre, Mainz, Germany
- <sup>12</sup> Leibniz Institute for Prevention Research and Epidemiology BIPS, Bremen, Germany
- <sup>13</sup> Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
- <sup>14</sup> Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
- <sup>15</sup> Institute of Pathology, Julius Maximilians University, Würzburg, Germany
- \* **Corresponding author:** Dirk Prawitt, Center for Pediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstraße 1, Uni-Klinik Geb. 109, 55131 Mainz, Germany, E-mail: <u>dprawitt@uni-mainz.de</u>
- <sup>¶</sup> These authors contributed equally to this work.

https://dx.doi.org/10.17179/excli2021-4482

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0/</u>).



arr[hg19] 16p13.3(1,345,222-3,178,084)x3

Supplementary Figure 2E, F

FaDu/subclone 4 mean methylation *RAD9A* 74%

Α



arr[hg19] 15q26.1q26.2(92,764,922-98,121,133)x0



Supplementary Figure 5A: Molecular karyotyping of FaDu subclones 4, 2, 6, 9 and 10. (A) *CHD2* and *SPATA8* are homozygously deleted in subclone 4. The upper bar mark represents the parental FaDu cell line. PCR analysis of *CDH2* and *SPATA8* genes confirmed the SNP Array result.



FaDu/subclone 6 mean methylation *RAD9A* 73%

arr[hg19] Xq25(128,640,315-128,652,483)x1



**Supplementary Figure 5B:** Homozygous mutation (deletion using SNP-Array and stop mutation using Sanger sequencing) is shown for *SMARCA1* in subclone 6. The analysis of **A** and **B** was conducted in two different passages (p5 and p9).



## FaDu/subclone 10 mean methylation *RAD9A* 69%

## arr [hg19] 16q23.1(75,318,494-75,620,953)x3

**Supplementary Figure 5C:** The subclone 10 displayed a 302 kb duplication (indicated as a blue bar) in 16q23.1(75,318,494-75,620,953).





# arr [hg19] 3q25.33q26.33(159,599,190-183,199,315)x2

**Supplementary Figure 5D-F** show the restoration of duplicated areas in subclones 2 and 9. The upper blue bar represents the duplicated chromosome section in the parental cell line FaDu.

# FaDu/subclone 2 mean methylation *RAD9A* 42%



arr[hg19] 12q24.22q24.32(117,452,580-133,584,910)x2

Supplementary Figure 5E

# FaDu/subclone 9 mean methylation *RAD9A* 40%

| -                         | ٥               | ٥jo | -0 | ł   | ۵    | ł  | ſ  | ۵  | -   | -   | ۵  |          |     |    |     |    | ۵   |    | -  |     |    | ю | í   |    |   |     |     | ۵  |       |      |    | -  | 1   |     | ۵   |         | _      | _   |     |
|---------------------------|-----------------|-----|----|-----|------|----|----|----|-----|-----|----|----------|-----|----|-----|----|-----|----|----|-----|----|---|-----|----|---|-----|-----|----|-------|------|----|----|-----|-----|-----|---------|--------|-----|-----|
| 1.5                       |                 |     |    |     |      |    | Ļ  |    | į,  |     |    | <u>ب</u> | 4   | •  |     |    | •,  |    |    |     |    |   | Ŀ   |    | ÷ | -   | , I | .; | i.    |      |    |    |     |     | 4   |         | i a ta | 5   | U-s |
| 313.3.                    |                 | 1   |    |     |      | "  |    | ÷  |     | ÷   |    |          |     | 1  |     | 1. | 7   | *  | *. | 1   |    | - | 7   | ;  | - | Ŷ   |     |    |       |      |    | -1 | ç   | 4   | ť   |         | ç      |     |     |
| 2                         |                 | 14  | ł  | H   | ::   | 1  | ł  | :: | ::  |     | :: | -        | : : | :  |     |    | :   | :: | :  |     | :: | : | ł   |    |   | ::  | ::  | -  |       | ::   |    | :: | ţ   |     | :   | <u></u> | 1      |     |     |
| -io:                      |                 | 11  | 11 |     | •••  |    | 1  |    | :   | ••• |    | 1        | •   | 1  | ••• |    | 1   | :: | :  | •   | :: | : | ••• |    |   | ••• |     | 1  | ::    |      | 1  | :: | :   | ••• | :   | •••     |        | 11  |     |
|                           |                 |     |    |     |      | _  | _  |    |     | _   |    |          |     |    |     | _  |     |    |    |     | _  |   | _   |    | _ | _   | _   |    | _     |      |    |    | _   | _   | _   | _       | _      |     | -   |
| iiCe a v                  | - ÷             | ::  | 4  | ÷   | th.  | â  | i  | ŀ  | ċ   | ċ   |    | ĥ        | 1   | i  | ł.  | h  |     |    | Ľ  |     | i  | đ | đ   |    | ÷ |     | 1   | 4  | 4     |      | 1  | Ľ  | 'n  | 4   | ÷   |         |        | h   | 8   |
| 315.3.                    |                 | -   |    |     | 1    |    |    | 7  |     |     |    | 24       | •   | 13 |     |    | *   |    | Ģ  |     | ~  | - |     | 4  | - |     |     |    | 4     | Τ    |    | ~  | ę,  |     | 7   |         |        |     | 7   |
| <u>,</u>                  |                 | 11  | 11 | 11  | 11   | 1  | Ĩ  | 11 | 1   |     |    | ł        |     | ł  |     |    | ł   |    | ł  |     |    | 1 |     |    |   | 11  | 1   | 1  | 11    |      |    |    | 1   |     | ł   |         |        |     | 11  |
| O<br>Genes                |                 | i:  |    |     | 11   |    |    |    |     |     |    | 1        |     | :  |     |    | i   |    | :  |     |    | i |     |    |   |     |     | 1  |       |      |    |    | ŀ   |     | i   | 1       |        |     |     |
|                           | нп              | 11  |    |     |      |    | 11 |    | HEH | HI  | H  |          | ł   |    |     |    |     |    | I  |     |    |   | 11  | 11 | H | I   | I   |    |       | Ш    | I  | 1  |     |     |     | I.      |        |     |     |
| DICLE III DE<br>OMM ® Gen | A 1-HERI<br>0 S | 1   |    |     | 11   | 11 |    | •  | H   |     | 1  | H        | H   |    |     |    |     |    | 1  |     | I  |   | 11  |    |   | HDC |     | U  |       | 1    | H  | 11 | 011 | 1   |     | 1       | I      | I   | Ч   |
|                           |                 |     |    |     | _    |    |    |    |     |     |    |          |     |    |     |    |     |    |    |     |    |   |     |    | _ |     |     |    |       |      |    |    |     |     |     |         |        |     |     |
|                           |                 |     |    |     |      |    |    |    |     |     |    |          |     |    |     |    |     | _  |    |     |    |   |     |    |   |     |     | I  |       |      |    |    |     |     |     |         |        |     |     |
| 70000kb                   |                 | _   | -1 | 500 | 04.5 |    | _  | _  |     | 1   | 00 | 90k      | 5   | _  | _   | -  | _   | 85 | 00 | )kb |    | _ | _   | _  | - | 000 | )0k | 5  | _     | _    | _  | _  | \$5 | 000 | )kb | _       |        | _   | _   |
| q24                       | .2              |     |    | _   | 24.  | 3  |    |    |     |     |    | - 11     | 51  |    |     | 43 | 1.2 |    |    |     | 11 |   |     |    |   | 932 | .11 |    | - q.) | 12.1 | 12 | Ξ. | 432 | .13 | 1   |         | 432    | . 2 |     |

arr[hg19] 14q24.2q32.13(71,543,696-97,490,985)x2

Supplementary Figure 5F

| Gene                               | Chromosomal<br>localization <sup>a</sup><br>(bp) | Amplic<br>on size<br>(bp) | Forward primer                           | Reverse primer                           | Sequencing primer         | No. of<br>CpG<br>sites | Reference                          |
|------------------------------------|--------------------------------------------------|---------------------------|------------------------------------------|------------------------------------------|---------------------------|------------------------|------------------------------------|
| BRCA1                              | Chr17:<br>43,125,274-<br>43,125,506              | 232                       | ATTTAGAGTAG-<br>AGGGTGAAGG               | *TCTATCCCTCCCATCCTC<br>TAATT             | TGGGTGGTTAAT<br>TTAGAGT   | 5                      | Galetzka et al., 2012              |
| CDKN2A                             | Chr9:<br>21,974,960-<br>21,975,129               | 169                       | GGTTGTTTTYGGTT-<br>GGTGTTTT              | *ACCCTATCCCTCA-<br>AATCCTCTAAAA          | TTTTTGTTTG-<br>GAAAGAT    | 2                      | Feng et al., 2007                  |
| TP53                               | Chr17:<br>7,674,136 -<br>7,674,298               | 162                       | *TTTTTTAGGTTGGTTT-<br>TGATTGTA           | AAAACACAACAAACCAA-<br>TATACA             | TAATAATAAAAA<br>TAAACCTC  | 2                      | Designed for this study (exon 6)   |
| <i>APC</i> (part a)<br>Promoter 1A | Chr5:<br>112,737,678-<br>112,737,871             | 193                       | *GGTTAGGGTTAGG-<br>TAGGTTGT              | ACTACACCACTACAACCA-<br>CATATC            | CCACACCCAAC-<br>CAA       | 7                      | Modified after Schatz et al., 2006 |
| APC (part b)<br>Promoter 1A        | Chr5:<br>112,737,677-<br>112,737,779             | 102                       | GGGTTAGGGTTAGGTA<br>GGT                  | *TCCAAC-<br>CAATTACACAAC-<br>TACTTCTCTCT | AG-<br>GGTTAGGTAGG<br>TT  | 6                      | Modified after Schatz et al., 2006 |
| RAD9A                              | Chr11:<br>67,392,508-<br>67,392,610              | 102                       | GGTTTTTATGGG-<br>GAAAGGAGG               | *CCACAAACCCAAC-<br>CCTCTAAC              | TTTTATGGG-<br>GAAAGGA     | 3                      | Modified after Cheng et al., 2005  |
| EFNA5                              | Chr5:<br>107,670,853-<br>107,670,957             | 104                       | GAGGGTTTAGGAG-<br>GAAAAAGGAATTA          | *CCCCCCAAACACAACTTA<br>AC                | AATTATAAGATG-<br>GAGAGAAG | 5                      | Kuang et al., 2008                 |
| FBN1                               | Chr15:<br>48,417,049-<br>48,417,285              | 236                       | GTAGTAGGGTAG-<br>AAATTTATAGT-<br>TAGGTTT | *CCACTTTTATCCAC-<br>CTATTTTCTAAT         | ATTATAGTGTTT-<br>TTTAAGAG | 1                      | Flanagan et al., 2006              |

### Supplementary Table 1: List of PCR- and sequencing primer (5'-3'orientation) for bisulfite pyrosequencing

<sup>a</sup> according to Ensemble NCBI human assembly GRCh37 (Ensembl release 92). \* biotinylated

#### **References cited in Supplementary Table 1:**

Cheng CK, Chow LWC, Loo WTY, Chan TK, Chan V. The cell cycle checkpoint gene Rad9 is a novel oncogene activated by 11q13 amplification and DNA methylation in breast cancer. Cancer Res. 2005;65: 8646–54. doi:10.1158/0008-5472.CAN-04-4243.

Feng W, Shen L, Wen S, Rosen DG, Jelinek J, Hu X, et al. Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res. 2007;9:R57. doi:10.1186/bcr1762.

Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadzadeh A, Schumacher A, et al. Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet. 2006;79:67–84.

Galetzka D, Hansmann T, El Hajj N, Weis E, Irmscher B, Ludwig M, et al. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer. Epigenetics. 2012;7:47–54. doi:10.4161/epi.7.1.18814.

Kuang S-Q, Tong W-G, Yang H, Lin W, Lee MK, Fang ZH, et al. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. 2008;22: 1529–38. doi:10.1038/leu.2008.130.

Schatz P, Distler J, Berlin K, Schuster M. Novel method for high throughput DNA methylation marker evaluation using PNA-probe library hybridization and MALDI-TOF detection. Nucleic Acids Res. 2006;34: e59. doi:10.1093/nar/gkl218.

| Gene   | Primer  | Sequence (5' to 3')                                              | CpG  | Chromosomal                  | Amplicon |
|--------|---------|------------------------------------------------------------------|------|------------------------------|----------|
|        |         |                                                                  | No.  | localization (bp)            | length   |
| APC    | Forward | ACACTCTTTCCCTACACGACGCTCTT-<br>CCGATCTGGTTAGGGTTAGGTAGGTTGT      | - 16 | Chr5:112,737,678-112,737,871 | 193bp    |
|        | Reverse | CCGATCTACTACACCACCACATATC                                        |      |                              |          |
| CDKN2A | Forward | ACACTCTTTCCCTACACGACGCTCTT-<br>CCGATCTGGTTGTTTTYGGTTGGTGTTTT     | 10   | Chr9:21 974 960-21 975 129   | 169bp    |
|        | Reverse | GTGACTGGAGTTCAGACGTGTGCTCTT-<br>CCGATCTACCCTATCCCTCAAATCCTCTAAAA |      |                              |          |
| RAD9A  | Forward | ACACTCTTTCCCTACACGACGCTCTT-<br>CCGATCTGGTTTTTATGGGGAAAGGAGG      | 2    | Chr11:67.392.508-67.392.610  | 102bp    |
|        | Reverse | GTGACTGGAGTTCAGACGTGTGCTCTT-<br>CCGATCTCCACAAACCCAACCCTCTAAC     |      |                              | 1020p    |
| TP53   | Forward | ACACTCTTTCCCTACACGACGCTCTTCCGATCTTT-<br>TTTTAGGTTGGTTTTGATTGTA   | 2    | Chr17:7.674.136-7.674.298    | 162bp    |
|        | Reverse | GTGACTGGAGTTCAGACGTGTGCTCTT-<br>CCGATCTAAAACACAAACAAACCAATATACA  |      |                              | 10200    |

### **Supplementary Table 2:** Primers (5´-3´orientation) for deep bisulfite sequencing

<sup>a</sup> according to Ensemble NCBI human assembly GRCh38 (Ensembl release 104).