## **Original article:**

## MOLECULAR DOCKING AND MOUSE MODELING SUGGEST CMKLR1 AND INSR AS TARGETS FOR IMPROVING PCOS PHENOTYPES BY MINOCYCLINE

Mahdie Kian<sup>a†</sup>, Elham Hosseini<sup>b†</sup>, Tooba Abdizadeh<sup>c</sup>, Taimour Langaee<sup>d</sup>, Azadeh Khajouei<sup>a</sup>, Sorayya Ghasemi<sup>a\*</sup>

- <sup>a</sup> Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- <sup>b</sup> Department of Obstetrics and Gynecology, IVF Clinic, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- <sup>c</sup> Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- <sup>d</sup> Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL, USA
- <sup>†</sup> Joint first authors, contributed equally to this research work.
- \* Corresponding author: Sorayya Ghasemi, Ph.D., Associate Professor, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Tel: 09131856090, 03833331471; E-mails: <u>s.ghasemi@skums.ac.ir</u>, <u>sorayya.ghasemi@gmail.com</u>

https://dx.doi.org/10.17179/excli2021-4534

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0/</u>).

| en   P97468   CML1 MOUSE | MEYDAYND_SGIVDDEVSDGEGVEVDIEEASDWEAWADVELVATVSLVCE              | 50  |
|--------------------------|-----------------------------------------------------------------|-----|
| ndb160W/LD               | DUMDDUDCSDENI VECS CAPTARET DI ARVERI VESS CATA DI DI AR CETTI  | 50  |
| pub   60PPA   K          | -DIRDDDDVDGSAENLIFQGASMEINFSIFLNEIEEVSIESAGIIVLRILFLVVLGVIFV    | 23  |
|                          |                                                                 |     |
| sp P97468 CML1 MOUSE     | LGLLGNGLVIVIATFKMKKTVNTVWFVNLAVADFLFNIFLPMHITYAAMDYHWVFGKAMC    | 110 |
| pdb   60MM   R           | LGVLGNGLVIWVAGFRMTRTVTTICYLNLALADFSFTATLPFLIVSMAMGEKWPFGWFLC    | 119 |
| 6                        | **:****** :* *:*.:**.*: ::***:** *. **: *. **. :* ** :*         |     |
| SDIP974681CMT.1 MOTISE   | KISNELLSHNMVTSVELLTVISEDBCISVLLEVWSONHBSIBLAYMTCSAVWVLAFELSS    | 170 |
| ndb160MM1R               | KI THIWDINI FOSVELIGETAL DECICYL HEWAONHETYSLAMKVIVGDWILALVI.TL | 179 |
|                          | *: ::::. *:: ****: .*::**** ***:***:: ** *:*::*:                | 1,5 |
| sp P97468 CML1 MOUSE     | PSLVFRDTANIH-GKITCFNNFSLAAPESSPHPAHSQVVSTGYSRHVAVTVTRFLCGFLI    | 229 |
| pdb   60MM   R           | PVFLFLTTVTIPNGDTYCTFNFASWGGTPEERLKVAITMLTARGIIRFVIGFSL          | 233 |
| ••••••                   | * ::* ** *. * **: .:*. :: .* : **: **                           |     |
| sp P97468 CML1 MOUSE     | PVFIITACYLTIVFKLORNRLAKNKKPFKIIITIIITFFLCWCPYHTLYLLELHHTAV      | 287 |
| pdb   60MM   R           | PMSIVAICYGLIAAKIHKKGMIKSSRPLRVLTAVVASFFICWFPFOLVALLGTVWLKEML    | 293 |
| 6                        | *: *:: ** *. *:::: : *:*:::: ::: :**:** *:: : **                |     |
| sp P97468 CML1 MOUSE     | PSSVFSLGLPLATAVAIANSCMNPILYVFMGHDFRKFKVAL-FSRLANALSEDTGPS       | 343 |
| pdb   60MM   R           | FYGKYKIIDILVNPTSSLAFFNSCLNPMLYVFVGQDFRERLIHSLPTSLERALSEDSAPT    | 353 |
|                          | .::.: : ::::*: ***:**:*:*:**: : : : * .****:*:*:                |     |
| sp P97468 CML1 MOUSE     | SYPSHRSFTKMSSLNEKASVNEKETSTL 371                                |     |
| pdb   60MM   R           | NDTAANSASP 363                                                  |     |

**Supplementary Figure 1:** Alignment of CMKLR1 amino acid sequence and 60MM crystalline structure. \* Shows fully protected root positions (:) It represents protection between groups with quite similar characteristics, (.) indicating protection between groups with low similarity characteristics.

| sp P15208 INSR_MOUSE<br>pdb 6PXV A        | MGFGRGCETTAVPLLVAVAALLVGTAGHLYPGEVCPGMDIRNNLTRLHELENCSVIEGHL<br>HLYPGEVCPGMDIRNNLTRLHELENCSVIEGHL<br>************************************                             | 60<br>33   |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| gp P15208 INSR_MOUSE<br>pdb 6PXV A        | QILLMFKTRPEDFRDLSFPKLIMITDYLLLFRVYGLESLKDLFPNLTVIRGSRLFFNYAL<br>QILLMFKTRPEDFRDLSFPKLIMITDYLLLFRVYGLESLKDLFPNLTVIRGSRLFFNYAL<br>************************************  | 120<br>93  |
| sp P15208 INSR_MOUSE<br>pdb 6PXV A        | VIFEMVHLKELGLYNLMNITRGSVRIEKNNELCYLATIDWSRILDSVEDNYIVLNKDDNE<br>VIFEMVHLKELGLYNLMNITRGSVRIEKNNELCYLATIDWSRILDSVEDNYIVLNKDDNE                                          | 180<br>153 |
| sp P15208 INSR_MOUSE<br>pdb 6PXV A        | ECGDVCPGTAKGKINCPATVINGQFVERCWTHSHCQKVCPTICKSHGCTAEGLCCHKECL<br>ECGDICPGTAKGKINCPATVINGQFVERCWTHSHCQKVCPTICKSHGCTAEGLCCHSECL<br>****:                                 | 240<br>213 |
| ap P15208 INSR_MOUSE<br>pdb 6PXV A        | GNCSEPDDPTKCVACRNFYLDGQCVETCPPPYYHFQDWRCVNFSFCQDLHFKCRNSRKPG<br>GNCSQPDDPTKCVACRNFYLDGRCVETCPPPYYHFQDWRCVNFSFCQDLHHKCKNSRRQG<br>****:******************************** | 300<br>273 |
| gp P15208 INSR_MOUSE<br>pdb 6PXV A        | CHQYVIHNNKCIPECPSGYTMNSSNLMCTPCLGPCPKVCQILEGEKTIDSVTSAQELRGC<br>CHQYVIHNNKCIPECPSGYTMNSSNLLCTPCLGPCPKVCHLLEGEKTIDSVTSAQELRGC                                          | 360<br>333 |
| sp P15208 INSR_MOUSE<br>pdb 6PXV A        | TVINGSLIINIRGGNNLAAELEANLGLIEEISGFLKIRRSYALVSLSFFRKLHLIRGETL<br>TVINGSLIINIRGGNNLAAELEANLGLIEEISGYLKIRRSYALVSLSFFRKLRLIRGETL<br>************************************  | 420<br>393 |
| sp P15208 INSR_MOUSE<br>pdb 6PXV A        | EIGNYSFYALDNQNLRQLWDWSKHNLTITQGKLFFHYNPKLCLSEIHKMEEVSGTKGRQE<br>EIGNYSFYALDNQNLRQLWDWSKHNLTITQGKLFFHYNPKLCLSEIHKMEEVSGTKGRQE                                          | 480<br>453 |
| ap P15208 INSR_MOUSE<br>pdb 6PXV A        | RNDIALKTNGDQASCENELLKFSFIRTSFDKILLRWEPYWPPDFRDLLGFMLFYKEAPYQ<br>RNDIALKTNGDQASCENELLKFSYIRTSFDKILLRWEPYWPPDFRDLLGFMLFYKEAPYQ<br>***************************           | 540<br>513 |
| sp P15208 INSR_MOUSE<br>pdb 6PXV A        | NVTEFDGQDACGSNSWTVVDIDPPQRSNDPKSQTPSHPGWLMRGLKPWTQYAIFVKTLVT<br>NVTEFDGQDACGSNSWTVVDIDPPLRSNDPKSQNHPGWLMRGLKPWTQYAIFVKTLVT<br>***********************************     | 600<br>571 |
| <u>sp P15208 INSR_MOUSE</u><br>pdb 6PXV A | FSDERRTYGAKSDIIYVQTDATNPSVPLDPISVSNSSSQIILKWKPPSDPNGNITHYLVY<br>FSDERRTYGAKSDIIYVQTDATNPSVPLDPISVSNSSSQIILKWKPPSDPNGNITHYLVF<br>************************************  | 660<br>631 |
| gp P15208 INSR_MOUSE<br>pdb 6PXV A        | WERQAEDSELFELDYCLKGLKLPSRTWSPPFESDDSQKHNQSEYDDSASECCSCPKTDSQ<br>WERQAEDSELFELDYCLKGLKLPSRTWSPPFESEDSQKHNQSEYEDSAGECCSCPKTDSQ<br>************************************  | 720<br>691 |
| gp P15208 INSR_MOUSE<br>pdb 6PXV A        | ILKELEESSFRKTFEDYLHNVVFVPRPSRKRRSLEEVGNVTATTLTLPDFPNVSSTIVPT<br>ILKELEESSFRKTFEDYLHNVVFVPRPSRKRRSLGDVGNVTVAVPTVAAFPNTSSTSVPT<br>************************************  | 780<br>751 |
| gp P15208 INSR_MOUSE<br>pdb 6PXV A        | SQEEHRPFEKVVNKESLVISGLRHFTGYRIELQACNQDSPDERCSVAAYVSARTMPEAKA<br>SPEEHRPFEKVVNKESLVISGLRHFTGYRIELQACNQDTPEERCSVAAYVSARTMPEAKA                                          | 840<br>811 |
| gp P15208 INSR_MOUSE<br>pdb 6PXV A        | DDIVGPVTHEIFENNVVHLMWQEPKEPNGLIVLYEVSYRRYGDEELHLCVSRKHFALERG<br>DDIVGPVTHEIFENNVVHLMWQEPKEPNGLIVLYEVSYRRYGDEELHLCVSRKHFALERG                                          | 900<br>871 |
| <u>sp P15208 INSR_MOUSE</u><br>pdb 6PXV A | CRLRGLSPGNYSVRVRATSLAGNGSWTEPTYFYVTDYLDVPSNIAKIIIGPLIFVFLFSV<br>CRLRGLSPGNYSVRIRATSLAGNGSWTEPTYFYVTDYLDVPSNIAKIIIGPLIFVFLFSV                                          | 960<br>931 |

**Supplementary Figure 2:** INSR amino acid sequence alignment and 6PXV crystalline structure. \* Shows fully protected root positions (:) It represents protection between groups with quite similar characteristics, (.) indicating protection between groups with low similarity characteristics.

| sp P15208<br>pdb 6PXV | LINSR_MOUSE | VIGSIYI<br>VIGSIYI<br>******  | LFLRKRQPDGPMGPLYASSNPEYLSASDVFPSSVYVPDEWEVPREKITLLRELG<br>LFLRKRQPDGPLGPLYASSNPEFLTASDVFPCSVYVPDEWEVSREKITLLRELG<br>***********      | 1020<br>991  |
|-----------------------|-------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------|
| sp P15208<br>pdb 6PXV | INSR MOUSE  | QGSFGM<br>QGSFGM<br>******    | /YEGNAKDIIKGEAETRVAVKTVNESASLRERIEFLNEASVMKGFTCHHVVRLL<br>/YEGNARDIIKGEAETRVAVKTVNESASLRERIEFLNEASVMKGFTCHHVVRLL                     | 1080<br>1051 |
| sp P15208<br>pdb 6PXV | INSR MOUSE  | GVVSKG(<br>GVVSKG(<br>******  | QPTLVVMELMAHGDLKSHLRSLRPDAENNPGRPPPTLQEMIQMTAEIADGMAYL<br>QPTLVVMELMAHGDLKSYLRSLRPEAENNPGRPPPTLQEMIQMAAEIADGMAYL                     | 1140<br>1111 |
| sp P15208<br>pdb 6PXV | LINSR_MOUSE | NAKKFVI<br>NAKKFVI<br>******  | HRDLAARNCMVAHDFTVKIGDFGMTRDIYETDYYRKGGKGLLPVRWMSPESLKD<br>HRNLAARNCMVAHDFTVKIGDFGMTRDIYETDYYRKGGKGLLPVRWMAPESLKD<br>**:*******       | 1200<br>1171 |
| sp P15208<br>pdb 6PXV | INSR MOUSE  | GVFTASS<br>GVFTTSS<br>****:** | SDMWSFGVVLWEITSLAEQPYQGLSNEQVLKFVMDGGYLDPPDNCPERLTDLMR<br>SDMWSFGVVLWEITSLAEQPYQGLSNEQVLKFVMDGGYLDQPDNCPERVTDLMR                     | 1260<br>1231 |
| sp P15208<br>pdb 6PXV | LINSR MOUSE | MCWQFNH<br>MCWQFNH<br>******  | PKMRPTFLEIVNLLKDDLHPSFPEVSFFYSEENKAPESEELEMEFEDMENVPLD<br>PKMRPTFLEIVNLLKDDLHPSFPEVSFFHSEENKAPESEELEMEFEDMENVPLD                     | 1320<br>1291 |
| sp P15208<br>pdb 6PXV | LINSR_MOUSE | RSSHCQI<br>RSSHCQI<br>******  | REEAGGREGGSSLSIKRTYDEHIPYTHMNGGKKNGRVLTLPRSNPS<br>REEAGGRDGGSSLGFKRSYEEHIPYTHMNGGKKNGAAATAPRSNPSLESSGLEV<br>*******:*****.:**:*:**** | 1372<br>1351 |
| sp P15208<br>pdb 6PXV | INSR_MOUSE  | <br>LFQ                       | 1372<br>1354                                                                                                                         |              |

**Supplementary Figure 2 (cont.):** INSR amino acid sequence alignment and 6PXV crystalline structure. \* Shows fully protected root positions (:) It represents protection between groups with quite similar characteristics, (.) indicating protection between groups with low similarity characteristics.



**Supplementary Figure 3:** Alignment of CMKLR1 model (cyan color) and 6OMM template structure of N-formyl peptide receptor 2 using Chimera software, this model showed that template structure and model have high structural similarity with low RMSD value.



**Supplementary Figure 4:** INSR model Alignment and 6PXV template structure of insulin receptor protein using Chimera, this model showed that the template structure and model have high structural similarity with low RMSD values.



**Supplementary Figure 5:** Evaluation of stereochemical accuracy of CMKLR1 model by Ramachandran plot. This plot shows that 92.9 % (249 amino acids) of residues in favored regions, 6.0 % (16 amino acids) in additional allowed regions, 0.4 % (1 amino acid) in generously allowed regions and 0.7 % (2 amino acids) in disallowed regions and Ramachandran plot shows most of the amino acids of the predicted model are in the favored and allowed regions and indicate the good stereochemical quality of the model.



**Supplementary Figure 6:** Evaluation of stereochemical accuracy of INSR model by Ramachandran plot. This plot shows that 85 % (686 amino acids) of residues in favored regions, 12.6 % (102 amino acids) in additional allowed regions, 1.5 % (12 amino acid) in generously allowed regions and 0.9 % (7 amino acids) in disallowed regions and Ramachandran plot shows most of the amino acids of the predicted model are in the favored and allowed regions and indicate the good stereochemical quality of the model.



**Supplementary Figure 7:** Structure validation of modeled CMKLR1 and INSR protein structures: (**a** and **b**) Comparison of the modeled protein structures with a non-redundant set of PDB structures. (**a**' and **b**'). Local quality estimate of the residue graphs.



**Supplementary Figure 8:** (**a**,**b**,**c**) Validation of CMKLR1 model. Z-score diagram is surface energy diagram of amino acids and surface energy display on the 3D structure of the protein, (**d**) ERRAT energy plan



**Supplementary Figure 9: (a,b,c)** Validation of the INSR model. The Z-score diagram is a surface energy diagram of amino acids and surface energy display on the 3D structure of the protein, (d) ER-RAT energy plan



**Supplementary Figure 10:** Binding envelope surface of CMKLR1 modeled protein calculated using CASTp 3.0. Docking analysis confirms the binding envelope level of proteins calculated using CASTp in CMKLR1 protein.



**Supplementary Figure 11:** Level binding envelope of modeled proteins calculated using CASTp 3.0. Docking analysis confirms the binding envelope level of proteins calculated using CASTp in INSR proteins.

| server     | E-value         | sequence identity (%)                 |  |
|------------|-----------------|---------------------------------------|--|
|            |                 | , , , , , , , , , , , , , , , , , , , |  |
| PDB-Blast  | 6e-61 (CMKI R1) | 35 19 (CMKLR1)                        |  |
| i DE Blact | 0.0 (INSR)      | 95.64 (INSR)                          |  |
| JPRED      | 7e-52 (CMKLR1)  | -                                     |  |
|            | 0.0 (INSR)      |                                       |  |
| Phyre2     | - /             | 32.14 (CMKLR1)                        |  |
| •          |                 | 92.17 (INSR)                          |  |

Supplementary Table 1: E-value and sequence identity of CMKLR1 and INSR in the different programs

**Supplementary Table 2:** Serum hormones profile of studied groups

| Group               | FSH (IU/L) | LH (IU/L) | T (ng/mL)   | E2 (pg/ml) |
|---------------------|------------|-----------|-------------|------------|
| Control             | 0.08±0.01  | 0.08±0.01 | 0.011±0.002 | 18±0.8     |
| PCOS model          | 0.06±0.02  | 0.09±0.02 | 0.015±0.002 | 30±2*      |
| Control minocycline | 0.07±0.01  | 0.06±0.01 | 0.013±0.002 | 14±2.5     |
| PCOS minocycline    | 0.05±0.01  | 0.09±0.03 | 0.014±0.003 | 16±0.5**   |
| PCOS letrozole      | 0.15±0.04  | 0.18±0.04 | 0.006±0.002 | 14±2†      |
| PCOS metformin      | 0.13±0.03  | 0.15±0.03 | 0.024±0.002 | 16±0.12†   |

**NOTE**: \* compared to control group; \*\* compared to control minocycline group; † compared to PCOS model group. Estradiol concentration significantly increased in PCOS model group compared to the control group (P<0.01) Also, (\*\*P<0.01) PCOS Minocycline vs. PCOS model. (†P<0.01) PCOS Letro-zole vs. PCOS model. (†P<0.01) PCOS Metformin vs. PCOS model.

|                     |           |             | _          |                  |             |
|---------------------|-----------|-------------|------------|------------------|-------------|
| Group               | Primary F | Secondary F | Graafian F | Corpus<br>Luteum | Hemorrhagic |
| Control             | 3±1       | 7±1         | 3±1        | 5±2              | 2±1         |
| PCOS model          | 4±1       | 10±4        | 8±2*       | 1±1*             | 3±1         |
| Control minocycline | 2±1       | 4±1         | 3±1        | 3±2              | 2±1         |
| PCOS minocycline    | 3±1       | 6±1         | 2±1†       | 4±1†             | 2±1         |

4±2

4±1

Supplementary Table 3: Evaluation of different ovarian follicle stages in studied groups

2±1

2±1

**PCOS** letrozole

**PCOS** metformin

**NOTE**: \* compared to control group; \*\* compared to control minocycline group; † compared to PCOS model group. The number of Graafian follicles were significantly decreased in the PCOS Minocycline, PCOS Letrozole, PCOS Metformin vs. PCOS model ( $\uparrow$ P < 0.01), and increased PCOS model vs. control(\*P<0.01) . The number of Corpus Luteum were significantly increased in the PCOS Minocycline vs. PCOS model ( $\uparrow$ P < 0.01), and PCOS metformin vs PCOS model. ( $\uparrow$ P <0.01), and decreased PCOS model vs. control(\*P<0.01).

2±1†

2±1†

1±1

3±1†

6±2†

2±1