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ABSTRACT 

The ability to distinguish clinically meaningful subtypes of heart failure with preserved ejection fraction (HFpEF) 

has recently been examined by machine learning techniques but studies appear to have produced discordant results. 

The objective of this study is to synthesize the types of HFpEF by examining their features and relating them to 

phenotypes with adverse prognosis. A systematic search was conducted using the search terms “Diastolic Heart 

Failure” OR “heart failure with preserved ejection fraction” OR “heart failure with normal ejection fraction” OR 

“HFpEF” AND “machine learning” OR “artificial intelligence” OR ‘computational biology’. Ten studies were 

identified and they varied in their prevalence of ten clinical variables: age, sex, body mass index (BMI) or obesity, 

hypertension, diabetes mellitus, coronary artery disease, atrial fibrillation, chronic kidney disease, chronic obstruc-

tive pulmonary disease or symptom severity (NYHA class or BNP). The clinical findings associated with the 

different phenotypes in > 85 % of studies were age, hypertension, atrial fibrillation, chronic kidney disease and 

worse symptoms severity; an adverse outcome was in 65 % to 85 % of studies identified diabetes mellitus and 

female sex and in less than 65 % of studies was body mass index or obesity, and coronary artery disease. COPD 

was a relevant factor in only 33 % of studies. Adverse clinical outcome – death or admission to hospital (for heart 

failure) defined phenogroups with the worst outcome. Combining the 4 studies that calculated the MAGGIC score 

showed a significant (p<0.05) linear relationship between MAGGIC score and outcome, using the one-year event 

rate. A new score based on strength of the evidence of the HFpEF studies analyzed here, using 9 variables (elimi-

nating COPD), showed a significant (p<0.009) linear relationship with one-year event rate. Three studies examined 

biomarkers in detail and the ones most prominently related to outcome or consistently found in the studies were 

GDF15, FABP4, FGF23, sST2, renin and TNF. The dominant factors that identified phenotypes of HFpEF with 

adverse outcome were hypertension, atrial fibrillation, chronic kidney disease and worse symptoms severity. A 

new simplified score, based on clinical factors, was proposed to assess prognosis in HFpEF. Several biomarkers 

were consistently elevated in phenogroups with adverse outcomes and may indicate the underlying mechanism or 

pathophysiology specific for phenotypes with an adverse prognosis. 

 

Keywords: Diastolic heart failure, heart failure with preserved ejection fraction, machine learning, artificial intel-
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INTRODUCTION 

Heart failure with preserved ejection 

(HFpEF) which affects nearly half of all pa-

tients with heart failure is one of the major 

challenges in cardiology (Magana-Serrano et 

al., 2011; Reddy and Borlaug, 2016; 

Brouwers et al., 2013; Gustafsson et al., 2003; 

Owan et al., 2006).) Not only does HFpEF 

have an extremely heterogeneous pathophys-

iology (Warbrick and Rabkin, 2019; Mishra 

and Kass, 2021), it has been resistant to most 

conventional therapies, which have been suc-

cessful in the treatment of other kinds of heart 

failure (HF) (Shah, 2017; Albakri, 2018). The 

heterogeneity in pathophysiology has led in-

vestigators to examine whether there are dif-

ferent clinical entities that can be distin-

guished within the HFpEF patient population. 

This has been clinically challenging so that 

investigators have turned to data analytic 

techniques such as machine learning. Ma-

chine learning identifies patterns in complex 

data sets, which may exceed the human ca-

pacity to do so. Machine learning (ML) is be-

ing considered as the future of cardiovascular 

care as it can aid in understanding of a number 

of cardiovascular conditions (Giorgio et al., 

2021). Unsupervised ML seeks inherent pat-

terns in large complex data sets (Hastie et al., 

2009) and the techniques of cluster analysis 

have proven to be reliable to distinguish sub-

sets or groups (Huang, 1998; Hastie et al., 

2009; Mushtaq et al., 2018). 

Investigators have applied machine learn-

ing strategies to their HFpEF patient popula-

tions and have found different phenogroups 

(Shah et al., 2015; Hedman et al., 2020; 

Nouraei and Rabkin, 2021). Each study has 

defined different kinds of groupings and there 

has not been an attempt to synthesize this data 

and to gain a common understanding. The ob-

jective of this study is to evaluate and com-

pare HFpEF phenotypes that have been re-

cently proposed and to synthesis data in order 

to construct an easier approach to identify pa-

tient phenogroups with an adverse prognosis 

and a high-risk ‘pathophysiology’. 

METHODS 

Search strategy 

A systematic search was conducted 

through the Ovid Medline and Ovid Embase 

databases for the period prior to September 

2021. The search was conducted according to 

the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) for-

mat (Figure 1) (Moher et al., 2009). The 

search terms applied were (“Diastolic Heart 

Failure” OR “heart failure with preserved 

ejection fraction” OR “heart failure with nor-

mal ejection fraction” OR “HFpEF”) AND 

“machine learning” OR “artificial intelli-

gence” OR ‘computational biology’. The pre-

specified inclusion criteria were: (i) human 

subjects, (ii) English language publications. 

The exclusion criteria included (i) review ar-

ticles, (ii) editorials or letters, (iii) un-

published papers, (iv) animal studies, (v) 

studies primarily on biomarkers or diagnostic 

testing e.g., echocardiography and clinical as-

sessment only. 

 

Study selection 

Using the search terms above, 51 total ar-

ticles were identified and were combined with 

4 additional records identified through other 

sources. An initial screening of titles and ab-

stracts was conducted, followed by a screen-

ing of the remaining full-text articles (Figure 

1). Articles were eliminated because of the 

exclusion criteria, leaving 10 articles that 

were included in qualitative and quantitative 

synthesis. Of the ten studies two utilized the 

same database and another two studies evalu-

ated a modification of the same database. 

Most studies were eliminated because they 

applied machine learning to characterize bi-

omarkers or diagnostic tests rather than utiliz-

ing machine learning to define phenotypes of 

HFpEF. 

It is worth commenting on several ex-

cluded studies. Przewlocka-Kosmala et al. 

studied 177 patients with HFpEF and sought 

subtypes but on the basis of exercise stress 

testing data - an approach that other studies 

did not use (Przewlocka-Kosmala et al., 

2019). Tromp et al. subtyped patients with 
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Figure 1: Ooutline of the search strategy using the PRISMA format 

 

 

heart failure from 11 Asian regions using the 

ASIAN-HF registry of 6480 patients but the 

database included only 1204 patients with 

HFpEF so that the phenotypes identified were 

overwhelmingly influenced by the 80 % who 

did not have HFpEF (Tromp et al., 2018). 

Sabbah et al. did not attempt to identify a new 

HFpEF clinical classification but rather to use 

ML analytic techniques to determine whether 

unique inflammation patterns exist in HFpEF 

and are associated with clinical severity or 

profibrotic state (Sabbah et al., 2020). One 

study enrolled patients with echocardio-

graphic evidence of diastolic dysfunction and 

evaluated whether they did or did not progress 

to have clinical evidence of heart failure 

(HFpEF) (Kaptein et al., 2020). One study fo-

cused on comparing different ML models ra-

ther than trying to identify phenogroups 

(Angraal et al., 2020). This is not an inclusive 

list of all studies excluded from analysis but 

rather a commentary on some of them. 

 

RESULTS 

Methodologies 

There were 10 studies that applied ma-

chine learning, artificial intelligence or com-

putational biology to human data on HFpEF 

(Table 1). Nouraei and Rabkin examined 196 

patients with HFpEF from an ambulatory 

clinic population and employed a non-hierar-

chical cluster analysis that used partitioning 

around medoids (PAM), on 47 variables 

(Nouraei and Rabkin, 2021). The PAM ap- 
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Table 1: Nature of the studies 

Author Study population HFpEF criteria LVEF N Cluster analysis/ 
ML approach 

Outcome 

Nouraei and 
Rabkin, 2021 

Out-patient clinic Clinical Dx of HF  ≥ 50 % 196 Partitioning around  
myedoids 

All cause mortality or HF hosp 

Casebeer et al., 
2021 

Medicare Prescription 
Drug Database 

Clinical Dx of HF  ≥ 50 % 1515 Hierarchical  All cause mortality or HF hosp 

Woolley et al., 
2021 

Scottish cohort of  
BIOSTAT-CHF 

Clinical Dx of HF  ≥ 50 % 429 Hierarchical  All cause mortality or HF hosp 

Gu et al., 2021 Shanghai Ninth People's 
Hospital. 

Clinical Dx of HF  ≥ 50 % 970 Hierarchical  All cause mortality  

Hedman et al., 
2020 

Karolinska-Rennes  
cohort 

Clinical Dx plus BNP   ≥ 45 % 320 Hierachical using Mclust 
function  

All cause mortality or HF hosp 

Schrub et al., 
2020 

Karolinska-Rennes  
cohort  

Clinical Dx plus BNP   ≥ 45 % 538 Hierarchical  All cause mortality or HF hosp 

Cohen et al., 
2020 

TOPCAT Clinical Trial Clinical Dx of HF  ≥ 45 % 3442 Latent-class analysis All cause mortality or HF hosp  

Segar et al., 
2020 

TOPCAT Clinical Trial Clinical Dx of HF  ≥ 45 % 654  Model-based clustering  CV death, aborted cardiac arrest 
or HF hosp 

Shah et al., 2015 Hospital discharge for 
heart failure 

Clinical Dx of HF > 50 % 397 Hierarchical & penalized 
model  

All cause mortality or CV hosp 

Kao et al., 2015 i-Preserve Clinical Trial Clinical Dx of HF > 45 % 4113 Latent-class analysis All cause mortality or cardiac 
hosp 

 
Dx= diagnosis 
HF= heart failure 
CV= cardiovascular 
hosp= hospitalization 
LVEF=Left ventricular ejection fraction 
N= number 
ML approach= Machine learning approach 
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proach assigns ‘k’ random entities to be me-

doids. The similarity between variables was 

assessed by the Gower distance that selects a 

particular distance metric which suits each 

variable type and scales the results to fall be-

tween 0 and 1 (Mushtaq et al., 2018). A sil-

houette plot, an aggregated measure of simi-

larity between observations within a cluster 

compared to observations in neighboring 

clusters determined the optimal number of the 

number of clusters (Kaufman and Rousseeuw, 

1990). The choice of the number of clusters 

was based on the largest silhouette width, 

which is an index reflecting the compactness 

of clusters and their separation from each 

other (Kaufman and Rousseeuw, 1990).  

Wooley et al. performed an unsupervised 

cluster analysis using 363 markers from 429 

patients with HFpEF from the Scottish cohort 

of BIOSTAT-CHF study which had data on 

1738 patients from six centers in Scotland, 

previously admitted with HF requiring diu-

retic treatment (Woolley et al., 2021). Patients 

with LVEF greater or equal to 50 % were 

evaluated. Principle component analysis was 

performed in order to reduce biomarker di-

mensions and collinearity. Clustering was 

performed on principle components with an 

eigenvalue of one or above using a hierar-

chical clustering algorithm (Woolley et al., 

2021). 

Casebeer et al. (2021) identified 1515 pa-

tients newly diagnosed with heart failure and 

an ejection fraction of 50 % or greater who 

were enrolled in a US Medicare Advantage 

Prescription Drug healthcare. Hierarchical 

clustering assigned each observation to their 

own cluster and then iteratively merges clus-

ters based on their distance to other clusters. 

A high-performance clustering procedure was 

used to perform the cluster analysis. For cate-

gorical variables, the Hamming method was 

used to create a distance matrix on the re-

duced set of baseline characteristics, and then 

the Ward method was used to apply hierar-

chical clustering to the distance matrix data 

source (Casebeer et al., 2021). 

Gu et al. (2021) recruited a longitudinal 

cohort study of adults with HF from Shanghai 

Ninth People's Hospital. HFpEF was defined 

by clinical features of HF with LVEF greater 

than or equal to 50 %. Recruitment occurred 

where the patient was either in the hospital for 

a primary diagnosis of HFpEF (the assess-

ment was performed following stabilization 

of the acute HF) or in the outpatient setting 

within 3 months of an episode of decompen-

sated HF (requiring hospitalization or treat-

ment in an outpatient setting) (Gu et al., 

2021). Exclusion criteria included severe 

valve disease, transient acute pulmonary 

edema in the context of primary acute coro-

nary syndrome, end-stage renal failure (esti-

mated glomerular filtration rate). Hierarchical 

clustering utilized 11 prospectively selected 

features: age, gender, body mass index 

(BMI), AF, hypertension, ischemic heart dis-

ease (CAD), type 2 DM, estimated glomerular 

filtration rate (eGFR), hemoglobin, E/e’ ratio 

on echocardiogram and BNP. Model-based 

clustering of standardized variables was per-

formed in R using the Mclust function in the 

mclust package, with default settings, and the 

optimal model and number of clusters deter-

mined by the maximum BIC (Gu et al., 2021). 

Hedman et al. (2020) and Schrub et al. 

(2020) used cluster analytic techniques on the 

Karolinska-Rennes cohort (KaRen study) 

(Donal et al., 2009). The KaRen study in-

cluded patients who presented to the Emer-

gency with the clinical signs and symptoms of 

HF, fulfilling the Framingham criteria, with 

an elevated BNP or N-terminal prohormone 

of BNP, with an echocardiographic measure-

ment of LVEF greater than 45 % within the 

first 72 hours of presentation (Donal et al., 

2009). Hedman et al. (2020) applied data an-

alytics to a model based on data from 320 pa-

tients collected in stable condition with 

HFpEF clustering 32 echocardiographic and 

11 clinical or laboratory variables from 320 

HFpEF outpatients in the collected in stable 

condition in the KaRen study cohort. Model-

based clustering of standardized variables 

performed used the Mclust function and the 

optimal model and number of clusters was de-

termined by the maximum BIC with three 

multinomial classification methods (Elastic 
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Net, Neural Networks and Naive Bayes, in the 

R statistical package (Hedman et al., 2020).  

Schrub et al. (2020) performed a cluster 

analysis of 538 patients from the KaRen 

study. A hierarchical cluster analysis was 

conducted using two-stage density linkage, 

specifying five neighbors for k-nearest neigh-

bor density estimation (Schrub et al., 2020). 

Segar et al. (2020) and Cohen et al. (2020) 

examined data from the TOPCAT study, a 

large multicenter international trial evaluating 

the efficacy of spironolactone therapy in pa-

tients older than 50 years of age with sympto-

matic HFpEF and an LVEF ≥ 45 %. Latent 

class analysis (LCA) was used to determine 

clusters of clinical phenotypes. LCA uses fi-

nite mixture modeling to classify individuals 

into mutually exclusive subgroups, maximiz-

ing within-group similarities and between-

group differences on the basis of multiple ob-

served population characteristics (Cohen et 

al., 2020). To determine the optimal number 

of phenogroups, several metrics were utilized, 

specifically the parametric bootstrap likeli-

hood ratio test, Akaike’s Information Crite-

rion, BIC, and sample-size-adjusted BIC (Co-

hen et al., 2020). 

Segar et al. (2020) examined a subset of 

the TOPCAT participants with echocardio-

graphic data (n = 654). A total of 61 continu-

ous and categorical variables were used that 

encompassed a range of domains including 

demographics, clinical variables, laboratory 

data, electrocardiographic characteristics, and 

echocardiographic factors (Segar et al., 2020). 

To determine the optimal number of pheno-

groups, they used model-based clustering 

with optimization of the BIC and Dunn index 

(Segar et al., 2020). The BIC introduces a 

penalty term for the number of parameters in 

the model thus selecting models with better 

fit, while the Dunn index identifies clusters 

that are compact, with small intra-cluster var-

iance, and well separated, where the centers 

of each cluster are far apart (Segar et al., 

2020). They selected the optimal number of 

clusters choosing the model with the lowest 

absolute value of the BIC and the highest 

Dunn index. 

Shah et al. (2015) prospectively collected 

data on 397 patients with HFpEF and per-

formed detailed clinical, laboratory, ECG, 

and echocardiographic phenotyping of pa-

tients who comprised consecutive patients 

who were recruited after heart failure hospi-

talization. Agglomerative hierarchical clus-

tering was used and hierarchical clustering 

was performed with the ‘hclust function (in R 

3.0.1)’, with the dissimilarity matrix given by 

euclidean distance and the average linkage 

score used to join similar clusters (Shah et al., 

2015). BIC was used to penalize increases in 

model complexity such as a greater number of 

clusters or variability in standard deviation 

across variables and across clusters (Shah et 

al., 2015). 

Kao et al. (2015) examined data from the 

I-PRESERVE study that enrolled HFpEF pa-

tients ≥ 60 years old with New York Heart 

Association (NYHA) class II-IV symptoms 

and hospitalization owing to heart failure or 

NYHA class III-IV symptoms and pulmonary 

congestion on X-ray. Patients were character-

ized according to 11 prospectively selected 

clinical features: LCA was performed using 

the polkas library in the R statistical package. 

LCA definitions were derived using maxi-

mum-likelihood estimation to identify the 

most common patterns. The optimal number 

of subgroups for I-PRESERVE was deter-

mined using the first minima of the BIC and 

χ2 statistic. Probabilities of membership in 

each subgroup for every LCA variable were 

used to determine the most likely subgroup 

for each patient (Kao et al., 2015). 

 

Phenogroups 

Of the ten studies three suggested that 

there were six phenotypes and six studies sug-

gest that there were only three phenotype (Ta-

ble 2). One study reported that the ‘optimal 

number of clusters was six’, but due to the 

small size of two clusters (n = 3 and n = 2), 

they focused on the (remaining four) patient 

clusters (Woolley et al., 2021). It is notewor-

thy that in the KaRen cohort, one evaluation 

considers that there were six phenotypes 

while another analysis concluded that there
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Table 2: Clinical characteristics of each phenotype in the ten studies 
 

Phenotypes Age Female BMI/Obe-
sity % 

HTN % Afib % DM % CAD % CKD (%) 
eGFR 

COPD % NYHA ≥ III BNP/ 
proBNP 

Nouraei and 
Rabkin, 2021 

1 73 75 26 30 20 11 16 14 14 NA 102 

2 75 11 26 43 7 11 86 21 7 NA 99 

3 78 87 24 97 13 18 21 13 8 NA 105 

4 83 87 25 97 56 13 19 25 6 NA 244 

5 71 25 27 100 8 72 67 17 6 NA 132 

6 83 0 27 82 71 12 18 35 6 NA 438  
** ** ns ** ** ** ** ** ns 

 
* 

Woolley et al., 
2021 

1 79 40 29 72 54 53 54 74 19 74 1720 

2 80 47 28 72 47 33 65 68 28 77 1304 

3 74 43 30 62 41 35 66 22 22 54 591 

4 79 40 29 72 56 36 72 54 42 81 2175  
** ns ns ns ns 0.048 ns *** * ** ** 

Casebeer et 
al., 2021 

1 76 59 8% 79 26 36 30 18 19 NA NA 

2 70 55 36% 96 24 51 51 33 57 NA NA 

3 73 48 24% 94 35 51 47 35 39 NA NA  
** ** *** **** **** **** **** **** *** 

  

Gu et al., 
2021 

1 69 41 24% 72 37 30 34 GFR=62 10 45 774 

2 71 50 25% 74 47 34 39 GFR=50 12 48 791 

3 70 38 25% 78 36 39 48 GFR=60 10 55 848  
*** * *** ns * * ** *** ns * * 

Hedman et 
al., 2020 

1 74 50 37 100 37 53 47 67 6.7 23 NA 

2 78 45 35 82.5 85 38 35 45 30 53 NA 

3 72 44 48 75 48 27 21 38 12.5 19 NA 

4 74 44 48 75 90 33 39 19 15.4 29 NA 

5 78 66 36 74 43 30 39 19 12.9 18 NA 

6 78 69 27 80 96 20 22 18 10.2 20 NA 

 ** *** ns 
ns  

p=0.06 
*** 

ns 
p=0.06 

ns 
p=0.06 

*** 
ns  

p=0.06 
***  

Schrub et al., 
2020 

1 76 40 29 89 12 60 NA 60 11 NA NA 

2 74 69 31 73 33 12 NA 35 14 NA NA 

3 77 62 29 76 87 23 NA 37 13 NA NA  
** ** ** ** ** ** 

 
** ns 

  

   
% 

        

Cohen et al., 
2020 

1 61 46 44% 25 24 9 28 15 9 21 NA 

2 77 56 37% 23 49 17 23 58 12 32 NA 

3 66 53 98% 30 31 88 27 57 16 50 NA  
** ** *** *** ** ** * ** ** ** 
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Table 2 (cont.): Clinical characteristics of each phenotype in the ten studies 
 

Phenotypes Age Female BMI/Obe-
sity % 

HTN % Afib % DM % CAD % CKD (%) 
eGFR 

COPD % NYHA ≥ III BNP/ 
proBNP 

Segar et al., 
2019 

1 72.4 44.1 34.9 91.2 NA 74.3 NA GFR=52 16.9 52 1631 

2 70.5 52.8 33.2 90.7 NA 25.9 NA GFR=67 18.5 28 995 

3 71 48.3 31.6 91.2 NA 43.8 NA GFR=67 16.1 33 877  
ns ns * ns 

 
* 

 
* ns * * 

Shah et al., 
2015 

1 61 67 31 66 13 9 42 6 34 32 72 

2 66 68 37 90 22 52 48 34 38 58 188 

3 67 82 29 75 43 34 50 53 38 54 607  
** p=0.049 ** ** ** ** ns ** ns * ** 

Kao et al., 
2015 

A           1 65 0 43% NA 18 27 57 11 NA NA 215 

B           2 65 96 43% NA 5 23 52 3 NA NA 142 

C          3 70 59 75% NA 33 100 66 20 NA NA 448 

D          4 73 100 46% NA 32 23 43 36 NA NA 321 

E          5 75 0 26% NA 44 17 62 39 NA NA 556 

F          6 82 78 24% NA 51 15 45 79 NA NA 950  
ND ** ND 

 
** ** ** ** 

  
ND  

             
 

 
*p<0.05 

     

  
 

 
** p<0.01 

     

     
***p<0.001 

     

NA = not available 
ND = not done 
MBMI= Body Mass Index 
HTN=Hypertension 
Afib=Atrial fibrillation 
DM= Diabetes mellitus 
CAD=Coronary artery disease 
CKD=Chronic kidney disease 
eGFR=estimated Glomerular Filtration Rate 
COPD= Chronic obstructive pulmonary disease 
NYHA=New York Heart Association (classification) 
BNP=Brain Natriuretic Peptide  
proBNP= pro-Brain Natriuretic Peptide 
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were only three phenotypes. The clinical 

characteristics of each phenotype are dis-

cussed. 

Nouraei and Rabkin (2021) found six sig-

nificantly different phenotypes or clusters. 

Phenogroup 1 women with a low proportion 

of vascular risk factors (HFpEF1). Pheno-

group 2 men with a high proportion of coro-

nary artery disease (CAD), dyslipidemia, 

higher serum creatinine, and diastolic dys-

function (HFpEF2). Phenogroup 3 women 

with a high proportion of hypertension and di-

abetes, but lower proportion of kidney disease 

and diastolic dysfunction (HFpEF3). Pheno-

group 4 older women with high rates of atrial 

fibrillation (AF), chronic kidney disease 

(HFpEF4). Phenogroup 5 men with the high-

est BMI, and high proportion of CAD, ob-

structive sleep apnea, and poorly controlled 

diabetes (HFpEF5). Phenogroup 6 men with 

high rates of atrial fibrillation (AF), elevated 

BNP, biventricular remodeling (HFpEF6) 

(Nouraei and Rabkin, 2021). 

Woolley et al. (2021) reported four dis-

tinct patient phenotypes. Patients in Pheno-

group 1 had the highest prevalence of chronic 

kidney disease (CKD, 74 %) and diabetes 

mellitus (53 %). Patients in Phenogroup 2 

had the oldest age and frequency of age-re-

lated morbidities such as AF (47 %) and hy-

pertension (72 %), however these did not 

reach significance. Patients in Phenogroup 3 

had the youngest age, largest body size, least 

symptoms and lowest N-terminal pro-B-type 

natriuretic peptide (NT-proBNP) levels. Pa-

tients in Phenogroup 3 were youngest (mean 

age 74 years), had the lowest prevalence of 

most comorbidities, except obesity (mean 

body mass index 30.4 kg/m2), were the least 

symptomatic and had the lowest plasma NT-

proBNP). Patients in Phenogroup 4 had the 

highest prevalence of ischemic etiology, 

smoking and chronic lung disease, the most 

symptoms, as well as highest NT-proBNP and 

troponin levels (Woolley et al., 2021).  

Casebeer et al. (2021) identified three dif-

ferent (clusters) phenotypes. Phenogroup 1 

patients had the lowest prevalence of heart 

failure comorbidities and highest mean age; 

Phenogroup 2 patients had higher prevalence 

of metabolic syndrome and pulmonary dis-

ease, despite younger mean age. Phenogroup 

3 patients had higher prevalence of cardiac ar-

rhythmia and renal disease (Casebeer et al., 

2021).  

Gu et al. (2021) identified three different 

(clusters) phenotypes. Phenogroup 1 was 

composed of younger individuals (69 years) 

with relatively good New York Heart Associ-

ation class (NYHA), preserved renal function 

and a lower prevalence of T2DM (30.0 %) 

and IHD (33.6 %), and higher level of hemo-

globin (Gu et al., 2021). Phenogroup 2 was 

characterized by older age (71 years), higher 

proportion of women (50.0 %) and higher 

prevalence of AF (46.7 %). Phenogroup 3 

had an intermediate age (70 years), with 

higher BMI (25.0), the higher prevalence of 

CAD (47.6 %) and T2DM (39.4 %), and se-

vere HF symptoms assessed by NYHA. BNP 

level was highest in Phenogroup 3 and low-

est in Phenogroup 1. All 3 phenotype groups 

had similar rates of beta-blockers or spirono-

lactone treatment but ACEI/ARB prescription 

was much more common in Phenogroup 3 

(Gu et al., 2021). 

Hedman et al. (2020) identified six com-

posite phenogroups. Phenogroup 1 was 

younger, had more cardiovascular risk factors 

and progressed to CKD (67 %). Phenogroup 

2 had more severe HF, with the greatest de-

gree of diastolic dysfunction (at least 30 % of 

patients with a grade II or higher) and the 

worst right ventricular function and high 

prevalence of COPD (30 %). Phenogroup 3 

had mild HF and HF symptoms, but the prev-

alence of obesity was 48 %. Phenogroup 4 

were male but otherwise similar to the female 

groups 5 and 6, with hypertension (75 %), left 

atrial enlargement and AF (90 %). This group 

had the largest proportion of pacemakers 

(25 %) and previous myocardial infarction 

(21 %), suggesting an ischemic etiology of 

HF. Phenogroups 5 and 6 were older women 

with a high proportion of hypertension (80 %) 

and AF (96 %) and lower body mass index 

(BMI) (mean=27), and CAD (40 %) (Hedman 

et al., 2020).  



EXCLI Journal 2022;21:487-518 – ISSN 1611-2156 

Received: December 06, 2021, accepted: January 12, 2022, published: February 22, 2022 

 

 

496 

Schrub et al. (2020) performed a cluster 

analysis of 538 patients from the KaRen study 

and identified 356 ‘analyzable’ patients 

(mean age 76 years; 44 % men). Phenogroup 

1 (n = 128) comprised overweight, relatively 

young men, in sinus rhythm, with reduced re-

nal function. Phenogroup 2 (n = 134) com-

prised women, most of whom were reported 

to have ‘conserved left ventricular function’. 

Phenogroup 3 (n = 94) had the highest inci-

dence of mitral regurgitation, atrial remodel-

ing and rhythm disorders (Schrub et al., 

2020). 

In TOPCAT study participants, Segar et 

al. (2020) concluded that there were three 

phenotypes. Phenogroup 1 had significantly 

higher BMI, more severe HF symptoms as as-

sessed by New York Heart Association class, 

and higher burden of DM, dyslipidemia, and 

atherosclerotic cardiovascular disease as 

compared with the other groups. Phenogroup 

1 participants had lower hemoglobin levels 

and higher blood glucose, creatinine, and 

blood urea nitrogen levels as compared with 

the other groups. It had the highest BNP lev-

els. Phenogroup 2 had the lowest burden of 

DM, HF symptoms, and atherosclerotic cardi-

ovascular disease. Liver function test abnor-

malities were more common in Phenogroup 

2 compared to other groups. Phenogroup 3 

had the lowest BMI and an intermediate bur-

den of atherosclerotic vascular disease and 

DM as compared with the other groups. BNP 

was the lowest of all three phenogroups. 

Blood glucose levels, renal function parame-

ters, hemoglobin levels were comparable in 

Phenogroups 2 and 3.  

The phenogroup algorithms from TOP-

CAT were applied to the data from the RE-

LAX trial on 198 participants (Segar et al., 

2020). Similar to the TOPCAT derivation co-

hort, Phenogroup 1 in the RELAX validation 

cohort had the highest burden of DM, higher 

BMI and BNP levels, and higher left atrial 

size and tricuspid regurgitation. Phenogroup 

2 had the lowest prevalence of cardio meta-

bolic disease but higher burden of diastolic 

dysfunction (Segar et al., 2020). Phenogroup 

3 participants had the lowest BMI, renal dys-

function, and BNP levels (Segar et al., 2020). 

Cohen et al. (2020) also examined the 

TOPCAT study participants. Phenogroup 1 

was composed of younger individuals (mean 

age 61 years) with relatively preserved func-

tional class, the highest prevalence of smok-

ing (24 %) among the groups, along with rel-

atively preserved renal function and a low 

prevalence of diabetes (9 %) (Cohen et al., 

2020). Phenogroup 2 was characterized by 

older age (mean age 77 years), the highest 

proportion of women (56 %), a high preva-

lence of atrial fibrillation (49 %) and CKD but 

a low prevalence of diabetes and obesity. 

Phenogroup 3 exhibited intermediate age 

(mean age 66 years), with a very high preva-

lence of obesity (98 %), DM (88 %), and im-

paired functional class. It also had a high 

prevalence of CKD (57 %) (Cohen et al., 

2020).  

Shah et al. (2015) identified three pheno-

groups that were significantly different from 

each other. Phenogroup 1 was younger and 

had lower BNP than participants in the other 

groups. Phenogroup 1 had the least electric 

and myocardial remodeling and dysfunction 

and the least hemodynamic derangement, alt-

hough even in this group, 65 % had at least 

moderate (grade 2) diastolic dysfunction, and 

the mean pulmonary artery systolic pressure 

was 42 mm Hg. Phenogroup 2 had the high-

est prevalence of obesity, DM, obstructive 

sleep apnea, worst LV relaxation, highest pul-

monary capillary wedge pressure, and highest 

pulmonary vascular resistance. Phenogroup 

3 was the oldest, was most likely to have 

chronic kidney disease and had the highest 

BNP. Phenogroup 3 had the most severe 

electric and myocardial remodeling with the 

longest QRS duration, largest QRS-T angle, 

highest relative wall thickness and LV mass 

index, highest E/e' ratio, and worst RV func-

tion (Shah et al., 2015).  

Kao et al. (2015) reported on the analysis 

of the IPRESERVE study and identified 6 

phenogroups. Phenogroup 1 (A) (median age 

65 years) was 100 % men. Phenogroup 2 (B) 



EXCLI Journal 2022;21:487-518 – ISSN 1611-2156 

Received: December 06, 2021, accepted: January 12, 2022, published: February 22, 2022 

 

 

497 

(median 65 years) was 96 % women. Pheno-

groups 1 (A) and 2 (B) had low rates of AF, 

renal dysfunction, and valvular disease. Phe-

nogroup 3 (C) (median 70 years) had high 

rates of obesity, DM, hyperlipidemia, CAD, 

and anemia with worse renal function than 

other subgroups. Phenogroup 4 (D) (median 

73 years) had 100 % women with average 

rates of DM, hyperlipidemia, and obesity and 

renal insufficiency. Phenogroup 5 (E) (me-

dian 75 years) was 100 % men with lower 

BMI, excess AF, and CAD. Phenogroup 6 

(F) was predominantly women (78 %) of ad-

vanced age (median 82 years) with lower 

BMI and high rates of AF, valvular disease, 

renal dysfunction, and anemia. This group 

had the highest NT-proBNP (Kao et al., 

2015). 

 

Comparison of clinical characteristics 

There were differences in clinical features 

of the phenotypes between the studies (Table 

2). Age was available in all studies. It was a 

significant factor in 8, not significant in one 

(Segar et al., 2020) and not analyzed in one 

study (Kao et al., 2015). Most studies showed 

that age was significantly different between 

the phenotypes. Sex was examined in all stud-

ies and was a significant factor in 8, although 

barely significant at the 5 % level in one study 

(Shah et al., 2015). Two studies did not find a 

difference in the sex distribution of individu-

als between phenotypes (Segar et al., 2020; 

Woolley et al., 2021). Body mass index or 

overweight status was available in all 10 stud-

ies and was significantly different between 

phenotypes in 6 of those studies and not ana-

lyzed in one. Hypertension was reported in 9 

of the studies and was significantly different 

between phenotypes in 5 studies. Atrial fibril-

lation was reported in 9 studies and was sig-

nificantly different across phenogroups in 8 

studies, not significant in one. DM was avail-

able in all 10 studies and was significantly dif-

ferent between phenotypes in 9 studies, alt-

hough in one study it was barely significant at 

the 5 % level. CAD was available in 8 studies 

and was significantly different between phe-

notypes in 5 studies. CKD or eGFR data was 

available in all 10 studies and was signifi-

cantly different between phenotypes in all 10 

studies. COPD was available in 9 studies and 

there were significant differences across phe-

notypes as only 3 studies reported a relation-

ship so that the majority (66.6 %) of studies 

did not find a difference in COPD amongst 

phenotypes. Heart failure severity was as-

sessed by NYHA class (Class III or greater) 

or by the degree of BNP or NT BNP elevation 

and was available in 8 studies. There were 

significant differences across phenotypes in 7 

of those studies and it was not analyzed in one 

study. Symptomatic heart failure severity 

likely mirrors the severity of diastolic dys-

function. 

 

OUTCOME 

Most of the studies examined the outcome of 

each of their phenogroups. The duration of 

follow-up varied between the studies. A 

standardizing of follow-up time of one-year 

(12 month) time was selected. Data were 

taken from the tables or graphical extrapola-

tions for each publication. Although there 

were differences in the type of outcomes be-

tween studies. Most studies used mortality 

and (re-)admission to hospital. Repeat hospi-

talizations was usually defined as readmission 

for heart failure but in some it was not speci-

fied. Nevertheless, it is a reasonable assump-

tion that in a heart failure population, hospital 

readmission for cardiac causes would most 

likely be heart failure. When the data came 

from a clinical trial, the primary end point was 

used which was usually death or hospitaliza-

tion (Table 1). The relationship to the type of 

phenotype was identified. In general, there 

were significant differences in outcomes for 

most of the studies according to the HFpEF 

phenotype (Figure 2). It showed that overall 

phenotyping HFpEF identified groups with 

different outcomes. The differences, how-

ever, varied considerably between the studies, 

in part because of the different types of sub-

groups and also likely different nature of the 

populations. 
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Figure 2: One year outcome in each phenogroup in each of the studies cited. The Charm-Preserve study was included in one of the publications. 
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Nouraei and Rabkin reported that the 

worst one year outcome was in Phenotype 4, 

followed by 6 and then 1, with the best out-

come being in group 3 (Nouraei and Rabkin, 

2021).  

Wooley et al. (2021) reported that after a 

median follow-up of 21 months, the occur-

rence of death or HF hospitalization was 

“highest in Phenogroups 1 and 4 (62.1 % and 

62.8 %, respectively) and lowest in cluster 3 

(25.6 %)’. ‘Rate of HF hospitalization alone’ 

was highest in cluster 1 (36 %), compared 

with 23 % in cluster 2, 18 % in cluster 3, and 

21 % in cluster 4 (Woolley et al., 2021). ‘Af-

ter correction for age, sex, previous HF hos-

pitalization and NYHA class, compared to 

cluster 1, patients in clusters 2 and 3 had a 

lower risk of death or HF hospitalization’ 

[hazard ratio 0.58 and 0.30 respectively] 

(Woolley et al., 2021). 

Casebeer et al. (2021) reported that their 

phenotype 3 had the highest 1-year heart fail-

ure related hospitalization rates.  

Gu et al. (2021) reported on the primary 

outcome defined as all-cause mortality and 

the secondary outcome which was the compo-

site endpoints of death or HF hospitalization. 

The 1 year and 5 year mortality data for all-

cause mortality was highest in Phenogroup 3 

followed by Phenogroup 2 and Phenogroup 

1. Similar patterns of association were also 

noted between phenogroups and composite 

endpoints, with a graded decrease in the inci-

dence of all-cause mortality or HF hospitali-

zation from Phenogroup 3, Phenogroup 2 to 

Phenogroup 1. In multivariable adjusted Cox 

models, HFpEF phenogroup was an inde-

pendent risk factor for all-cause mortality or 

composite endpoints (Gu et al., 2021). 

In the KaRen cohort, the initial analysis 

by Schrub et al. (2020) identified three phe-

nogroups. They reported ‘no statistical differ-

ence between the three clusters for the pri-

mary endpoint’. When death was the only cri-

terion analyzed, Phenogroup 3 (cluster 3) 

showed higher rates of short and midterm 

mortality (Schrub et al., 2020). In the same 

population, Hedman et al. (2020) did a more 

detailed analysis of a smaller sample of the 

same cohort and identified 6 phenotypes. 

They reported that ‘the composite end point 

was significantly different (log rank p<0.001) 

between the phenogroups to the 18 months 

follow-up, with Phenogroup 2 having the 

highest and Phenogroup 3 having the lowest 

event rates’. This phenogroup also had high 

NT-proBNP levels and the highest proportion 

of patients in New York Heart Association 

class IV. 

In the TOPCAT trial, the primary out-

come was a composite of hospitalization for 

management of HF, CV death or aborted car-

diac arrest (Segar et al., 2020). Cohen et al. 

found that in their analysis of TOPCAT that 

Phenogroup 3 had the worst outcome fol-

lowed by Phenogroup 2 with Phenogroup 1 

having the best outcome (Cohen et al., 2020). 

In the more detailed analysis by Segar et al. 

‘the cumulative incidence of the primary 

composite outcome was highest in Pheno-

group 1 followed by Phenogroup 2 and 3 

(48.5 %, 31.5 %, and 26.6 %, respectively)’. 

Similar patterns of association were also 

noted between phenogroups and non-fatal 

hospitalization outcomes, with a graded de-

crease in the incidence of all-cause and HF 

hospitalization from Phenogroup 1 to Phe-

nogroup 3. The cumulative incidence of all-

cause mortality was significantly higher in 

Phenogroup 1 and comparable between Phe-

nogroups 2 and 3. In contrast, the cumulative 

incidence of major atherosclerotic CV event 

was significantly higher in Phenogroup 1, 

but Phenogroup 2 had a lower risk compared 

to Phenogroup 3 (Segar et al., 2020).  

The phenogroup algorithms from TOP-

CAT were applied to the data from the RE-

LAX trial. There was a statistically significant 

difference in the clinical status rank on fol-

low-up between phenogroups. Phenogroup 1 

in the RELAX trial cohort, as in the TOPCAT 

cohort, had significantly worse clinical status 

rank on follow-up as compared with the other 

two groups (Segar et al., 2020) 

Shah et al. (2015) identified three pheno-

groups with Phenogroup 3 having the worst 

outcome and Phenogroup 1 having the best 

outcome. 
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In I Preserve, the primary outcome was 

all-cause mortality or hospitalization for a 

cardiovascular reason. The secondary out-

come was HF hospitalization or death due to 

either HF or sudden death. Mean follow-up 

was 49.5 months. Phenogroup 6 and 3 (F and 

C) had the highest rate of both outcomes 

whereas Phenogroup 2 (B) had the lowest 

primary outcome (Kao et al., 2015). Using the 

algorithms from I Preserve and applying it to 

the CHARM study, mean follow-up were 

36.6 months and where the primary endpoint 

was a composite of cardiovascular death or 

HF hospitalization. The results were similar 

with the worst prognosis in Phenogroup 6 

and 3 (F and C) with the best outcome in Phe-

nogroup 2 (B) (Kao et al., 2015).  

The approach developed using the I Pre-

serve data was applied to the CHARM-pre-

serve study. A similar pattern of differences 

between the phenogroups was observed alt-

hough the magnitude of the absolute adverse 

outcome was somewhat higher in CHARM-

Preserve. 

 

The clinical characteristics of phenotypes 

with the worst outcome 

Focusing on the clinical characteristics of 

the phenogroup from each study that had the 

worst prognosis revealed different composi-

tions of the phenogroup with the worst out-

come between groups. 

Nouraei and Rabkin (2021) reported that 

the worst outcome was in Phenogroup 4 that 

were predominantly older women with high 

rates of atrial fibrillation and chronic kidney 

disease (HFpEF4). 
Woolley et al. (2021) reported that the 

worst outcome was in Phenogroup 1 that had 

the highest prevalence of chronic kidney dis-

ease (CKD, 74 %) and diabetes mellitus 

(53 %). The next worst outcome, which was 

similar, was in Phenogroup 4, which had the 

highest prevalence of ischemic etiology, 

smoking and chronic lung disease, the most 

symptoms, as well as highest NT-proBNP and 

troponin levels (Woolley et al., 2021).  

Casebeer et al. observed the worst out-

come in Phenogroup 3 patients that had the 

higher prevalence of chronic kidney disease 

and cardiac arrhythmia (Casebeer et al., 

2021).  

Gu et al. (2021) found the worst outcome 

in Phenogroup 3. Patients in this group were 

intermediate in age (70 years), with higher 

BMI, the higher prevalence of CAD and 

T2DM and most severe HF symptoms as-

sessed by NYHA and highest BNP. 

Hedman et al. (2020) reported that their 

Phenogroup 2 had more severe HF, with the 

greatest degree of diastolic dysfunction and 

the worst right ventricular function and a high 

prevalence.  
In TOPCAT study participants, Segar et 

al. found the worst outcome in Phenogroup 1 

that had significantly higher BMI, more se-

vere HF symptoms as assessed by New York 

Heart Association class, higher burden of 

DM, dyslipidemia, and atherosclerotic cardi-

ovascular disease as compared with the other 

phenogroups (Segar et al., 2020). Pheno-

group 1 individuals had the highest BNP lev-

els. 

The phenogroup algorithms from TOP-

CAT were applied to the data from the RE-

LAX trial on 198 participants (Segar et al., 

2020). Similar to the TOPCAT derivation co-

hort, Phenogroup 1 in the RELAX validation 

cohort had the highest burden of DM, higher 

BMI and BNP levels, and larger left atrial 

size.  

Cohen et al. (2020) also examined the 

TOPCAT study participants and identified 

Phenogroup 3 that exhibited intermediate 

age (mean age 66 years), with a very high 

prevalence of obesity (98 %), DM (88 %), 

and impaired functional class. It also had a 

high prevalence of CKD (57 %).  

Shah et al. (2015) analysis found that Phe-

nogroup 3 was the oldest, was most likely to 

have CKD and had the highest BNP. Pheno-

group 3 also had the most severe electric and 

myocardial remodeling with the longest QRS 

duration, largest QRS-T angle, highest rela-

tive wall thickness and LV mass index, high-

est E/e' ratio, and worst RV function.  
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Kao et al. (2015) found that Phenogroup 

3 (C) (median 70 years) had high rates of obe-

sity, DM, hyperlipidemia, CAD, and worse 

renal function than other subgroups. Pheno-

group 6 (F) was predominantly women 

(78 %) of advanced age (median 82 years) 

with lower BMI and high rates of AF, valvu-

lar disease, and CKD. This group had the 

highest NT-proBNP. The phenogroup algo-

rithms from I Preserve were applied to the 

data from the CHARM-Preserve trial. The 

CHARM-Preserve study enrolled adults with 

an ejection fraction > 40 %, NYHA class II–

IV symptoms, for ≥ 4 weeks and a history of 

HF hospitalization and randomized them to 

candesartan or placebo. The primary endpoint 

was a composite of cardiovascular death or 

HF hospitalization. In that study, Pheno-

group 3 had the worst outcome which vali-

dated the I Preserve algorithm.  

 

Biomarker characterization of high risk 

HFpEF phenotypes 

There were only three studies that exam-

ined biomarkers in detail in their patient sub-

groups (Table 3). Woolley et al. reported that 

in their Phenogroup 1, there were 29 proteins 

that were significantly up-regulated com-

pared to the rest of the clusters (Woolley et 

al., 2021). These included significant biologi-

cal processes – members of the tumor necro-

sis factor (TNF) family and their receptors. In 

Phenogroup 2, no proteins were found to be 

significantly up- or down-regulated. In Phe-

nogroup 3, a total of 26 proteins were signif-

icantly down-regulated and there was a signif-

icant association with the TNF family and its 

receptors as well as some cytokine and cyto-

kine receptors. In Phenogroup 4, thirty-four 

proteins were found to be significantly up-

regulated and one protein was significantly 

down-regulated. The up-regulated proteins 

were considered to be associated with six bi-

ological processes ‘protein serine/threonine 

kinase inhibitor activity, regulation of recep-

tor internalization, viral myocarditis, Kaposi 

sarcoma-associated herpes virus infection, 

PI3K/AKT signaling in cancer and positive 

regulation of phosphatidylinositol 3-kinase 

activity (Woolley et al., 2021). 

In a subset of Swedish KaRen patients 

Hedman et al. examined plasma protein data 

and reported ten plasma proteins were directly 

associated with phenotypical variables and 

comorbidities (Hedman et al., 2020). Specific 

soluble ST2 (sST2) was highest in Pheno-

group 2, that had the worst outcome, while 

Phenogroup 1 had the highest levels of pro-

teins associated with CKD and HF incidence 

(FGF23, PlGF, TRAIL-R2, U-PAR) 

(Hedman et al., 2020).  

The TOPCAT study, assessed 49 bi-

omarkers and presented the level of signifi-

cance after correction for multiple compari-

sons (Cohen et al., 2020). Ten serum proteins 

were significantly different across their three 

phenogroups after adjusting for multiple com-

parisons of the initial analysis of the 49 bi-

omarkers. The biomarkers were considered to 

fall into one of several large groups: one 

group included biomarkers of fibrosis/tissue 

remodeling, inflammation, renal injury/dys-

function, and liver fibrosis. Inflammatory bi-

omarkers included TNF and its receptor fam-

ily (Cohen et al., 2020). Other clusters were 

composed of neurohormonal regulators of 

mineral metabolism, intermediary metabo-

lism and adipocyte biology (fatty acid binding 

protein-4 and growth differentiation factor-

15), angiopoietin-2 (related to angiogenesis), 

matrix metalloproteinase (related to extracel-

lular matrix turnover) (Cohen et al., 2020). 

sST-2 was significant although not after ad-

justing for multiple comparisons (Cohen et 

al., 2020).  

A combination of biomarkers was 

strongly predictive of the probability of an ad-

verse outcome and markedly improved the 

risk prediction when added to the MAGGIC 

risk score (Chirinos et al., 2020). In an inde-

pendent cohort, the model strongly predicted 

the risk of an adverse outcome, which was 

also independent of the MAGGIC risk score 

(Chirinos et al., 2020). 

Several proteins are worth discussing in 

detail because they were strongly associated 

with a phenotype with an adverse prognosis  
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Table 3: Some biomarkers associated with worst outcome in HFpEF 
  

TOPCAT 
 

KaREN 
  

Cohen et al., 
2020  

Woolley et al., 
2021 

Hedman et al., 
2020 

Agouti-related peptide AFRP 
  

+ 

Angiopoietin 1 ANGPT1 
 

+ 
 

Angiopoietin 2 ANGPT2 + 
  

Angiopoietin-1 receptor TEK/TI2 
  

+ 

Cystatin B CSTB 
 

+ 
 

C-C motif chemokine 20 CCL20 
 

+ 
 

Endothelial cell-specific  
molecule 1 

ESM-1 
  

+ 

Fatty acid binding protein 4 FABP4 + + 
 

Fibroblast growth factor 21 FGF 21 
 

+ 
 

Fibroblast growth factor 23 FGF 23 
 

+ + 

Growth differentiaion factor 15 GDF15 + + 
 

Heparin binding EGF-like 
growth factor 

HB-EGF 
  

+ 

Interleukin-16 IL-16 
 

+ 
 

Insulin like growth factor  
binding protein 1 

IGFB1 
 

+ + 

Insulin like growth factor  
binding protein 7 

IGFB7 
 

+ 
 

Matrix metalloproteinase-1 MMP1 
  

+ 

Matrix metalloproteinase-9 MMP9 + 
  

NF k B essential modulator NEMO 
  

+ 

Osteoprotegerin OPG + 
  

Pentraxin3 PTX3 + 
 

+ 

Placenta growth factor PIGF 
  

+ 

Renin Renin + 
  

ST2 protein sST2 
  

+ 

TNF alpha TNFa + 
  

Tumor necrosis factor receptor 
1A  

STNFRI + 
  

TNF receptor superfamily  
member 11A 

TNFRSF11A + 
 

TNF receptor superfamily  
member 14 

TNFRS14 
 

+ 
 

TNF receptor superfamily  
member 19 

TNFRSF19 
  

+ 

TNF receptor superfamily  
member 1A 

TNFRSF1A 
   

TNF-related apoptosis-inducing 
ligand receptor 2 

TRAIL-R2 
  

+ 

Urokinase plasminogen  
activator surface receptor 

U-PAR 
  

+ 
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or were identified in two different studies spe-

cifically GDF15, FABP4, FGF23, sST2, ma-

trix metalloproteinases and their inhibitors, 

and TNF receptors. 

 

Growth differentiation factor-15  

Two of the three studies identified high 

levels of Growth Differentiation Factor-15 

(GDF-15), in the phenotype with the worst 

prognosis. We have previously reviewed 

GDF-15 in HFpEF (Rabkin and Tang, 2021). 

GDF-15 is secreted as a pro-peptide that is 

cleaved in the endoplasmic reticulum, to an 

active peptide, then it can enter the circulation 

(Fairlie et al., 2001; Unsicker et al., 2013). 

GDF-15 mRNA and pro-peptide expression is 

induced through nitric oxide-peroxynitrite-

dependent signaling pathways in the heart 

where it can function in a protective capacity 

against myocardial ischemia (Kempf et al., 

2006). The pro-survival effects of GDF-15 

are medicated in part through a phosphoinosi-

tide3-OH kinase pathway (Kempf et al., 

2006). Over-expression of GDF-15 reduces 

expression of phosphorylated RelA p65, pro-

inflammatory and pro-apoptotic genes and in-

creased Foxo3, phosphorylation (Zhang et al., 

2017). These data, in conjunction with the 

findings using recombinant GDF-15, suggest 

that GDF-15 limits myocardial tissue damage 

and apoptosis (Kempf et al., 2006; Zhang et 

al., 2017). GDF-15 also enhances hyper-

trophic cardiomyocyte cell growth (Heger et 

al., 2010). Hypertrophic signaling is mediated 

via the kinases PI3K and ERK and the tran-

scription factor R-SMAD1 (Heger et al., 

2010). Previously, higher circulating levels of 

GDF-15 have been associated with a worse 

long term prognosis in acute heart failure or 

in HFrEF (Lin et al., 2014; Cotter et al., 2015; 

Bettencourt et al., 2018). Circulating GDF-15 

levels are higher in patients with HFpEF com-

pared to controls (Stahrenberg et al., 2010; 

Dinh et al., 2011; Santhanakrishnan et al., 

2012; Sinning et al., 2017). A meta-analysis 

of those studies found that compared to a con-

trol group, there were significantly and con-

sistently higher level of GDF-15 in HFpEF 

(Rabkin and Tang, 2021).  

The magnitude of GDF-15 elevation re-

lates to the alteration in left ventricular dias-

tolic dysfunction identified on echocardiog-

raphy (Stahrenberg et al., 2010; Dinh et al., 

2011; Santhanakrishnan et al., 2012). Meta-

analysis revealed that the greater the elevation 

of circulating GDF-15 correlates with the 

greater degree of diastolic dysfunction 

(Rabkin and Tang, 2021). Some data suggest 

that BNP does not add meaningful diagnostic 

information after considering GDF-15 

(Santhanakrishnan et al., 2012). 

There is a slightly higher level of GDF-15 

in patients with HFpEF compared to HFrEF 

but it is often not statistically significant 

(Rabkin and Tang, 2021). Whether this re-

flects the association of diastolic dysfunction 

in some cases of systolic dysfunction is un-

known. 

Two mechanisms that can produce an in-

crease in left ventricular end diastolic pres-

sures and reduce left ventricular diastolic 

compliance are increased left ventricular 

mass and cardiac fibrosis (Wesseling et al., 

2020). Pro-hypertrophic and anti-hyper-

trophic effects of GDF15 have been de-

scribed, suggesting effect of GDF-15 in car-

diac hypertrophic responses dependent on the 

environmental circumstances (Wesseling et 

al., 2020). 

Up-regulated expression of GDF-15, in 

newborn rat cardiac fibroblasts after transfec-

tion with Gdf15 increased cell proliferation 

rate and expression of fibrosis markers 

(Col1α and αSMA) (Guo et al., 2021), while 

down-regulation of GDF-15 inhibited cardiac 

fibrosis (Guo et al., 2021) through the 

MAPK/ERK1/2 pathway. GDF-15 could in-

duce cell proliferation through the PI3K/Akt 

and ERK signaling pathways (Jin et al., 

2012). Circulating GDF-15 was significantly 

correlated with the amount of myocardial fi-

brosis in end-stage HF patients prior to 

LVAD implantation (Lok et al., 2012). How-

ever, anti-fibrotic and pro-fibrotic effects of 

GDF15 have been described (Wesseling et al., 

2020) so that the causative role of GDF15 in 

HFpEF requires further investigation. 
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In morbidly obese individuals, GDF-15 

levels appear to correlate better with diastolic 

dysfunction than NT-proBNP levels so that 

GDF-15, adds incremental value to NT-

proBNP (Baessler et al., 2012).  

 

FGF23 

Fibroblast growth factor-23 (FGF23), 

produced mainly by osteoblasts/osteocytes, 

functions to inhibit renal tubular phosphate 

reabsorption and regulates plasma phosphate 

levels (Martin et al., 2012). FGF23 is also ex-

pressed in the heart, and is markedly en-

hanced in settings of cardiac remodeling and 

heart failure (Leifheit-Nestler and Haffner, 

2018). FGF23 promotes hypertrophic growth 

of cardiac myocytes acting through FGF re-

ceptor-4 dependent activation of phospho-

lipase C/calcineurin/nuclear factor of acti-

vated T cell signaling independent of its co-

receptor klotho (Leifheit-Nestler and Haffner, 

2018). FGF23 is expressed in cardiac myo-

cytes, cardiac fibroblasts, vascular smooth 

muscle and endothelial cells in coronary ar-

teries, and in inflammatory macrophages 

(Leifheit-Nestler and Haffner, 2018). Be-

cause of this diversity in cellular expression, 

FGF23 can stimulate cardiac hypertrophy 

and/or cardiac fibrosis dependent in part on 

cardiac status and other factors (Leifheit-

Nestler et al., 2021). 

In the MESA cohort of 6542 persons who 

were free of cardiovascular disease at base-

line, FGF23, even after adjusting for other 

factors, was association with the incidence of 

HFpEF (Almahmoud et al., 2018). In small 

clinical studies, circulating levels of another 

FGF, FGF21, correlate with echocardio-

graphic parameters of diastolic function and 

LV end-diastolic pressure (Chou et al., 2016). 

In patients with HFpEF, higher FGF23 levels 

are independently associated with decreased 

exercise capacity (Ghuman et al., 2021). 

Higher circulating FGF23 levels are associ-

ated with more cardiac fibrosis estimated by 

cardiac magnetic resonance (Roy et al., 

2020).  

In summary FGF23 is likely a causal fac-

tor in production of HFpEF because it fulfills 

criteria for causality (Rabkin and Sackett, 

1982) being able to predict the development 

of the condition, correlates with the severity 

of the condition and has a reasonable biologic 

mechanism, specifically FGF23 can stimulate 

cardiac hypertrophy and/or cardiac fibrosis 

which will produce diastolic dysfunction. 

 

Fatty acid-binding protein 4  

Fatty acid-binding proteins (FABPs) com-

prise a family of intracellular lipid chaperones 

that regulate lipid trafficking and responses in 

cells and are linked to metabolic and inflam-

matory pathways (Furuhashi et al., 2014). 

FABP4 generally had higher affinity and se-

lectivity for long-chain fatty acids and pal-

mitic acid, a saturated fatty acid, that has rel-

atively high affinity for FABP4 under a spe-

cific condition such as obesity-induced oxida-

tive stress (Furuhashi, 2019). Palmitic acid 

can be toxic to cardiomyocytes producing car-

diomyocyte cell death (Kong and Rabkin, 

2002). 

FABP4 plasma levels predicted a higher 

risk for the development of heart failure as 

demonstrated in the Cardiovascular Health 

Study, a large epidemiologic study with a me-

dian follow-up period of 10.7 years (Djousse 

et al., 2013). This association was attenuated 

but remained statistically significant upon ad-

justment for traditional HF risk factors includ-

ing BMI and eGFR (Djousse et al., 2013). As 

well, there was no evidence that this associa-

tion was modified after consideration of eth-

nicity, age, sex, waist circumference, and dia-

betes status (Djousse et al., 2013). The inves-

tigators concluded that the relationship was 

the same for HFpEF and HFrEF (Djousse et 

al., 2013). The concept has developed that 

FABP4 is a predictor but not a causative fac-

tor of HF (Rodriguez-Calvo et al., 2017). 

There is however, some experimental evi-

dence suggesting that the metabolic effects of 

FABP4 should be able to modify cardiac 

function (Rodriguez-Calvo et al., 2017). In-

terestingly, fatty acid-binding protein 4 which 

differentiated women with diastolic dysfunc-

tion from controls was also one of 10 bi-

omarkers that differentiated women with pre-
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eclampsia from controls (Alma et al., 2017). 
There are, however, not a lot of data on 

FABP4 in HFpEF and it should be an area of 

further research. 

 

sST2  

In the analysis of the KaRen study, Hed-

man et al., reported that ST2 was significantly 

elevated in Phenogroup 2 that also had the 

worst outcome (Hedman et al., 2020). ST2 is 

part of the interleukin-1 receptor family (IL-

1R) which binds IL-33 using IL-1R3 as co-

receptor (Boraschi and Tagliabue, 2013; 

Pascual-Figal and Januzzi, 2015). The soluble 

isoform (sST2) is one of several ST2 

isoforms, which include both it and a trans-

membrane isoform (ST2L) generated by al-

ternative splicing (Iwahana et al., 1999. IL-

33, an interleukin-1-like cytokine, signals via 

the IL-1 receptor-related protein ST2 and in-

duces T-helper type 2-associated cytokines 

(Schmitz et al., 2005). IL-1R4, the IL-33 

binding chain, is known as T1 or ST2 

(Boraschi and Tagliabue, 2013). ST2 is up-

regulated in cardiac myocytes by mechanical 

strain or myocardial injury (Weinberg et al., 

2002; Sanada et al., 2007; Pascual-Figal and 

Januzzi, 2015). IL-33/ST2 exerts beneficial 

effects on the myocardium by limiting cardi-

omyocyte cell death, hypertrophy and pre-

venting cardiac fibrosis (Sanada et al., 2007; 

Kakkar and Lee, 2008; Seki et al., 2009; 

Pascual-Figal and Januzzi, 2015). The source 

of circulating ST2 in heart failure originates 

mainly in the heart but also in the lungs and 

the vascular endothelium (Pascual-Figal et 

al., 2018). sST2 has been proposed to be a sur-

rogate of pulmonary congestion in heart fail-

ure (Bayes-Genis et al., 2018). We have re-

viewed the data on sST2 in HFpEF (Rabkin 

and Tang, 2021) and found that sST2 corre-

lates with the severity of LV diastolic dys-

function (Wang et al., 2013; Zile et al., 2015; 

Ruocco et al., 2019). However, we reported 

(Rabkin and Tang, 2021) there was no signif-

icant difference between HFpEF and HFrEF 

(Santhanakrishnan et al., 2012; Sanders-van 

Wijk et al., 2015; Sinning et al., 2017; Tromp 

et al., 2017; Ruocco et al., 2019) suggesting 

that sST2 does not have a unique role in 

HFpEF but maybe operative across HF types. 

 

Renin 

Renin was a biomarker for high-risk 

groups. Whether renin is a cause or an effect 

of HFpEF remains to be determined. There 

are data that suggest a causal link between cir-

culating renin and the underlying factors lead-

ing to HFpEF. High renin levels can increase 

left ventricular mass (Koga et al., 1998) either 

directly or through increases in aldosterone 

levels (Edelmann et al., 2012). Renin has also 

been linked to myocardial fibrosis (Nguyen 

and Danser, 2008). Circulating renin contrib-

utes to cardiac-specific synthesis of angioten-

sin peptides that in turn enhance cardiac fibro-

sis (Prescott et al., 2000). 

 

TNF receptors 

A number of TNF receptor types were el-

evated in the HFpEF subtype with the worst 

prognosis. There is a need for further investi-

gation into their interrelationship and whether 

they might play a causal role in HFpEF. 

Viewed within the concept that HFpEF is re-

lated to a stiffer left ventricle produced by ei-

ther cardiac hypertrophy or fibrosis, it is note-

worthy that soluble tumor necrosis factor re-

ceptor (sTNFR)1 was significantly associated 

with LV mass, in a large epidemiologic study, 

even after multivariate analysis adjusting for 

demographic and medical risk factors (Takei 

et al., 2009). In patients with hypertension and 

left ventricular hypertrophy, plasma sTNF-R1 

was an independent predictor of left ventricu-

lar mass (Rosello-Lleti et al., 2009). Develop-

ment of cardiac fibrosis in response to angio-

tensin-II in mice consisted of two stages; an 

initial inflammatory response was followed 

by a fibrotic response; the latter was depend-

ent in part on TNFR1 signaling (Duerrschmid 

et al., 2015). 

In the multicenter PROMIS-HFpEF study 

(Prevalence of Microvascular Dysfunction in 

Heart Failure With Preserved Ejection Frac-

tion), 248 unique circulating proteins were 

quantified by a multiplex immunoassay 

(Sanders-van Wijk et al., 2020). TNFR1 and 
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GDF-15 as well as UPAR (urokinase plas-

minogen activator receptor), IGFBP7 (insu-

lin-like growth factor binding protein 7) were 

the top individual proteins that mediated the 

relationship between comorbidity burden and 

echocardiographic parameters of HFpEF 

(Sanders-van Wijk et al., 2020). 

 

Matrix metalloproteinases and their  

inhibitors 

Matrix metalloproteinases have been 

linked to various cardiovascular diseases 

(Rabkin, 2014; DeLeon-Pennell et al., 2017) 

and appear to be relevant in HFpEF. Increased 

circulating matrix metalloproteinase-2 

(MMP-2), the MMP tissue inhibitor-4 

(TIMPS-4 and collagen III N-terminal pro-

peptide [PIIINP]) along with decreased 

MMP-8 predict the presence of diastolic heart 

failure (Zile et al., 2011a). Indeed, a panel of 

these biomarkers, performed better than any 

single biomarker including NT-proBNP at 

identifying LVH or HFpEF (Zile et al., 

2011a). Elevated level of the active form of 

MMP-9 is associated with diastolic dysfunc-

tion, and the level of elevation correlates with 

the severity of diastolic dysfunction in pa-

tients with CAD (Chu et al., 2011). 

 

Integration of clinical characteristics of 

phenogroups and biomarkers with poor 

outcomes 

Integrating the data on the clinical charac-

teristics is important. Older age was signifi-

cantly associated with a poorer outcome in 

most studies. Sex was a significant factor but 

in only 80 % of phenogroups showing a sig-

nificant adverse outcome with females.  

High BMI or obesity was reported in all 

but one study and of those it was considered 

to be a significant factor in 63 % (5 of 8) and 

was not significant in 38 % (3 of 8). The dif-

ference in the relevance of obesity is striking 

as some studies highlight it as a dominant 

characteristic of its phenotype with the worst 

outcome (Cohen et al., 2020) while other 

studies did not have a high prevalence of obe-

sity or high BMI in their phenotypes with the 

worst outcome (Kao et al., 2015; Shah et al., 

2015; Nouraei and Rabkin, 2021). The patho-

physiologic explanations for the adverse ef-

fect of obesity center on the presence of a sys-

temic inflammatory state in obesity as adipose 

tissue is infiltrated by macrophages that se-

crete pro-inflammatory cytokines (Taube et 

al., 2012). In myocardium of HFpEF patients 

and ZSF1-HFpEF rats, E-selectin and inter-

cellular adhesion molecule-1 expression lev-

els were up-regulated; NADPH oxidase 2 ex-

pression was increased in endothelial cells 

and there was uncoupling of endothelial nitric 

oxide synthase. These data suggest that 

HFpEF is associated with coronary microvas-

cular endothelial activation and oxidative 

stress leading to cardiomyocyte stiffness and 

cardiac hypertrophy (Franssen et al., 2016).  

Interestingly, mice in which HFpEF was 

produced by d-aldosterone infusion, unilat-

eral nephrectomy, and 1 % saline for 4 weeks, 

failed to regulate body temperature during 

cold temperature exposure despite a larger 

brown adipose tissue mass (Valero-Munoz et 

al., 2016). These data suggest that HFpEF is 

associated with the expression and activation 

of the brown fat-specific genes in white adi-

pocytes or beiging in white adipose tissue and 

with dysfunctional brown adipose tissue 

(Valero-Munoz et al., 2016). Bariatric surgery 

is an effective method for weight reduction 

and reduction of epicardial fat (Rabkin and 

Campbell, 2015) and it improves cardiac 

structure and left ventricular diastolic func-

tion (Kurnicka et al., 2018). 

Hypertension was a significant factor in 

most studies (88 %, 7/8) in which it was re-

ported. The development of HFpEF in hyper-

tension is operative through several different 

pathways. First, hypertension-induced left 

ventricular hypertrophy represents a stiffer 

left ventricle because of the increased left 

ventricular mass. However, LVH is not al-

ways present in patients with HFpEF (Zile et 

al., 2011b) and different types of remodeling 

patterns (including eccentric LVH and con-

centric remodeling) can be found in patients 

with hypertension with or without HFpEF 

(Kasiakogias et al., 2021). Thus, additional 

factors need to be implicated. One thesis is 
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that hypertension along with the other factors 

such as obesity, DM, CKD and COPD 

(chronic obstructive pulmonary disease), in-

duce a pro-inflammatory state resulting in 

coronary microvascular endothelial dysfunc-

tion, reduced bioavailability of nitric oxide, 

reduced cyclic guanosine monophosphate, 

and reduced protein kinase G (PKG) activity 

in the cardiomyocytes, that leads to increased 

LV stiffness (Paulus and Tschöpe, 2013; Lee 

and Park, 2021). This concept is supported by 

findings that patients with hypertension and 

HFpEF, but not patients with isolated hyper-

tension, have significant increases in passive 

myocardial stiffness, collagen-dependent and 

titin-dependent stiffness in addition to 

changes in titin phosphorylation (Zile et al., 

2015). Titin (also known as connectin), an-

chors the Z-disc and extends to the M-line re-

gion of the sarcomere (Granzier and Labeit, 

2004). It functions as a molecular spring, 

maintaining the structural arrangement of 

thick and thin filaments, so that it plays a ma-

jor role in passive muscle stiffness; an im-

portant determinant of diastolic function 

(Granzier and Labeit, 2004). 

Other factors are undoubtedly also opera-

tive. Aldehyde dehydrogenase 2 (ALDH2) 

rs671 polymorphism, a genetic risk factor for 

hypertension, in Asian populations is also as-

sociated with an increased risk of HFpEF (Xia 

et al., 2020). 

Establishing target blood pressures for an-

tihypertensive drug therapy would be helpful 

to establish the role of hypertension in 

HFpEF. However to date no study has directly 

investigated the optimal blood pressure target 

in patients with hypertension and HFpEF 

(Kasiakogias et al., 2021). Just as low blood 

pressure treatment can have adverse conse-

quences for patients with hypertension 

(Rabkin et al., 2013; Khan et al., 2018), in 

older patients with hypertension and HFpEF, 

a systolic BP of less than 120 mmHg was as-

sociated with a higher risk of death (Faselis et 

al., 2021). 

Atrial fibrillation was also a significant 

factor in the phenotypes with adverse out-

comes as it was a significant factor in most 

studies (89 %; 8/9) in which it was reported. 

In patients hospitalized with HFpEF in the 

Japanese heart failure syndrome with pre-

served ejection fraction Nationwide Multi-

center Registry, the incidence of adverse 

events was higher in the AF group without 

CAD than non-AF without CAD in multivar-

iate analysis after consideration of other fac-

tors (Temma et al., 2020). Older patients with 

HFpEF and atrial fibrillation, in one study had 

the highest risk one year mortality (HR 1.71) 

(Tromp et al., 2018). The link between atrial 

fibrillation and HFpEF may represent one or 

both of two mechanisms which operate to 

produce increased stiffness of the left ventri-

cle and atrial fibrillation specifically inflam-

mation and/or cardiac fibrosis. Patients with 

HFpEF have increased serum levels of pro-in-

flammatory cytokines as discussed above 

(Table 3). Inflammation can also activate fi-

brotic pathways leading to cardiac fibrosis 

with structural re-modeling of the atria (Hu et 

al., 2015). Atrial fibrosis has been demon-

strated by cardiac MRI in AF (Gal and 

Marrouche, 2017). Cardiac fibroblasts can es-

tablish contact with cardiomyocytes develop-

ing low-resistance electrical junctions that 

can enhance phase 4 depolarization and pro-

mote ectopic impulse formation leading to re-

entrant arrhythmias (Nattel, 2017). 

Diabetes mellitus status was available in 

all studies and was a significant factor in the 

phenotypes with the worst outcome in 78 % 

of the studies. Clinical studies support the 

finding that the presence of diabetes mellitus 

worsens the prognosis of patients with HFpEF 

and also identify that patients with DM have 

more cardiac fibrosis as identified on MRI 

(Chirinos et al., 2019b; Lejeune et al., 2021). 

Patients with HFpEF and DM have greater 

aortic stiffness as measured by carotid-femo-

ral pulse wave velocity indicating a greater 

load on the left ventricle (Chirinos et al., 

2019a). Patients with type 2 DM and HFpEF 

tend to have worse LV diastolic function 

(Wang et al., 2018). Patients with type 2 DM 

and HFpEF show higher BMI and more kid-

ney disease and anemia than those without 



EXCLI Journal 2022;21:487-518 – ISSN 1611-2156 

Received: December 06, 2021, accepted: January 12, 2022, published: February 22, 2022 

 

 

508 

type 2 DM (Arevalo-Lorido et al., 2021). Alt-

hough DM is often associated with co-mor-

bidities, in HFpEF DM is a significant predic-

tor of mortality and hospitalization for HF 

even after adjusting for factors such as age, 

BMI, NYHA class and renal function 

(Lejeune et al., 2021). In the I-Preserve trial 

(Irbesartan in Heart Failure With Preserved 

Ejection Fraction), over a follow-up of 4.1 

years, cardiovascular death or heart failure 

hospitalization occurred in 34 % of patients 

with diabetes mellitus versus 22 % of those 

without diabetes mellitus (adjusted hazard ra-

tio, 1.75), and total mortality was greater in 

patients compared to those without diabetes 

mellitus (28 % versus 19 %; adjusted hazard 

ratio, 1.59) (Kristensen et al., 2017). These 

adverse outcomes for HFpEF patients with 

DM are accentuated by the presence of micro-

vascular complications (Sandesara et al., 

2018). 

Several common pathological mecha-

nisms in HFpEF and DM, including sodium 

retention and metabolic derangements link 

DM to HFpEF (McHugh et al., 2019). In hu-

man diabetic hearts, titin hypophosphoryla-

tion at S4099 and hyperphosphorylation at 

S11878 suggest increased passive cardiomy-

ocyte tension as well as altered activity of pro-

tein kinases (Hopf et al., 2018). 

In TOPCAT, the presence of DM was as-

sociated with higher levels of cardiac pro-fi-

brotic, and pro-inflammatory biomarkers. 

High-sensitivity C-reactive protein, pro-col-

lagen type III amino-terminal peptide, tissue 

inhibitor of metalloproteinase 1 (TIMP-1), 

and galectin-3 levels were higher in persons 

with DM than those without diabetes. There 

was a significant increase in levels of high-

sensitivity troponin T (hs-TnT), a marker of 

myocyte death, in DM patients. Elevated pro-

collagen type III amino-terminal peptide and 

galectin-3 levels were associated with an in-

creased risk of the primary outcome (cardio-

vascular mortality, aborted cardiac arrest, or 

HF hospitalization) in DM patients, but not in 

those without diabetes (De Marco et al., 

2021). 

There are a number of potential mecha-

nisms that may be operative in patients with 

DM leading to HFpEF. Coronary (micro)vas-

cular dysfunction and lymphatic vessel alter-

ations can play a role in HFpEF by reducing 

cardiac perfusion, and producing chronic low-

grade inflammation, and myocardial edema, 

fibrosis, and cardiomyocyte stiffness 

(Cuijpers et al., 2020). Coronary microvascu-

lar rarefaction may contribute to the left ven-

tricular diastolic dysfunction and impaired 

cardiac reserve function characteristic of 

HfpEF (Mohammed et al., 2015). 

Metformin treatment was associated with 

a lower incidence of new-onset symptomatic 

HFpEF, LV diastolic dysfunction and hyper-

trophy in patients with type 2 DM and hyper-

tension (Gu et al., 2020). 

CAD was available in only 8 of 10 studies 

and was a significant factor in 5 (of 8) or 63 % 

of studies. In other literature, the impact of 

CAD in HFpEF prognosis is not clear. Several 

observational studies did not show a prognos-

tic impact of CAD on HFpEF while other 

studies found a high prevalence of CAD in 

HFpEF compared with patients with LV hy-

pertrophy without heart failure or controls 

(Ohara and Little, 2010). One study found 

that patients with HFpEF and CAD had a 

greater deterioration in ejection fraction and 

increased mortality, independent of other pre-

dictors (hazard ratio: 1.71) compared with pa-

tients without CAD (Hwang et al., 2014). In 

another study of patients followed for 10 

years, patients with HFpEF and CAD were 

found to be at high risk of cardiovascular 

death, especially sudden death (Rusinaru et 

al., 2014). Elevated circulating level of the ac-

tive form of MMP-9 and TIMP-1 increased 

the ability to discriminate patients with 

HFpEF from controls (Chu et al., 2011). This 

finding has raised the suggestion that abnor-

mal extracellular matrix metabolism reflects 

the extent of myocardial ischemia (Chu et al., 

2011). 

Some of the patients with HFpEF and 

symptoms of myocardial ischemia have small 

vessel disease rather than epicardial coronary 

stenosis. Cardiac MRI studies have concluded 
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that HFpEF patients have a high prevalence of 

coronary microvascular dysfunction (CMD) 

as well as diffuse fibrosis (Loffler et al., 

2019). The microvascular disease may in part 

be due to increased vascular stiffness. In mul-

tivariable linear regression analysis, vascular 

stiffness assessed by pulse wave velocity was 

an independent predictor of diastolic function, 

as defined by left ventricular early diastolic 

circumferential strain rate (Samuel et al., 

2021). In symptomatic patients without overt 

CAD, impaired coronary flow reserve was in-

dependently associated with diastolic dys-

function and adverse events, especially 

HFpEF hospitalization (Taqueti and Di Carli, 

2018). The presence of both coronary micro-

vascular and diastolic dysfunctions was asso-

ciated with an increased risk of HFpEF events 

(Taqueti and Di Carli, 2018). 

CKD status was available in all except one 

study and was a significant factor in all of 

those studies. Renal dysfunction in HFpEF is 

a consequence of the complex interplay be-

tween hemodynamic factors, systemic con-

gestion, inflammation, endothelial dysfunc-

tion, and neurohormonal mechanisms. 

(Seetharam et al., 2020). CHD maybe caus-

ally related to HFpEF and as well HFpEF may 

exacerbate CKD, worsening renal function in 

patients hospitalized with HFpEF (Sharma et 

al., 2015).  

Patient with HFpEF and CKD have worse 

diastolic dysfunction as reflected by increased 

left atrial (LA) reservoir strain, LV longitudi-

nal strain, and right ventricular free wall strain 

even after adjusting for potential confounders, 

including co-morbidities, EF, and volume sta-

tus (Unger et al., 2016).  

CKD is a predictor for the development of 

HFpEF in patients with subclinical diastolic 

dysfunction (Kaptein et al., 2020). CKD in 

patients with HFpEF is characterized by echo-

cardiographic and biomarker profiles indica-

tive of more advanced heart disease 

(Mavrakanas et al., 2019). Patients with CKD 

were at increased risk for HFpEF admission 

(Mavrakanas et al., 2019).  

In patients with HFpEF, elevated cystatin 

C levels were associated with higher inci-

dence of all-cause mortality and hospital re-

admissions, outperforming other estimates of 

renal function including eGFR, BUN and cre-

atinine (Carrasco-Sanchez et al., 2011). 

Renal impairment causes metabolic and 

systemic derangements in circulating factors, 

causing an activated systemic inflammatory 

state and endothelial dysfunction, which may 

lead to cardiomyocyte stiffening, hypertro-

phy, and interstitial fibrosis via cross-talk be-

tween the endothelium and cardiomyocyte 

compartments (ter Maaten et al., 2016). 

Patients with CKD have a different meta-

bolic profile consistent with increased inflam-

mation and oxidative stress, impaired lipid 

metabolism, increased collagen synthesis, 

and down-regulated nitric oxide signaling 

(Hage et al., 2020). 

Clinical symptoms (NYHA class) or the 

degree of BNP (NT-BNP) elevations were a 

significant factor in all 7 of the studies in 

which it was analyzed. This likely reflects the 

degree of diastolic dysfunction or increase in 

left ventricular end diastolic or left atrial pres-

sure in patients with HFpEF.  

COPD was available in only 8 of 10 stud-

ies and was a significant factor in 3 or 33 % 

of the studies. Although in one of the studies, 

COPD was in the high risk phenotype showed 

(Woolley et al., 2021), the overall data do not 

support the contention that COPD is an indi-

cator of an adverse outcome in HFpEF. 

 

Clinical factors to predict outcome in 

HfpEF MAGGIC score 

The MAGGIC score is based on individ-

ual data on 39,372 patients with HF, both re-

duced and preserved left-ventricular ejection 

fraction, from 30 cohort studies (Pocock et al., 

2013). It identified thirteen significant inde-

pendent predictors of mortality which were 

(in order of predictive strength): age, lower 

EF, NYHA class, serum creatinine, diabetes, 

not prescribed beta-blocker, lower systolic 

BP, lower body mass, time since diagnosis, 

current smoker, chronic obstructive pulmo-

nary disease, male gender, and not prescribed 
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ACE-inhibitor or angiotensin-receptor block-

ers (Pocock et al., 2013). In HFpEF, age was 

more predictive and systolic BP was less pre-

dictive of mortality than in persons with re-

duced EF (Pocock et al., 2013). Four studies, 

examined herein, calculated the MAGGIC 

score on their participants. Each study 

showed a statistically significant difference 

across phenogroups. Combining all studies 

showed a significant relationship between 

MAGGIC score and outcome, using the pri-

mary outcome of each study and a one-year 

event rate (Figure 3). 

The phenogroup approach carries addi-

tional useful data. In TOPCAT, Phenogroup 

3 predicted outcome even after accounting for 

the MAGGIC score of that phenogroup 

(Cohen et al., 2020). 

 

A new simplified formula to assess adverse 

outcome in HFpEF based on clinical  

factors 

The MAGGIC score, however, was de-

rived mainly from patients with HFrEF and 

not HFpEF. It also considered medications 

which can readily be changed and may not be 

as relevant in HFpEF. Utilizing the data from 

all 10 studies with HFpEF, examined herein 

showed that there was a gradation in the con-

tribution of each of ten clinical variables from 

those that were significant in all studies (e.g. 

age and CKD), to those marginally more com-

mon in those with poor outcome (diabetes 

mellitus) to conditions that usually were not 

significantly related to an adverse outcome in 

the majority of studies, specifically COPD. 

Assigning a value to each of the clinical fac-

tors that were present in the phenotypes with 

the poorest outcome of 20, specifically age 

(over 75 years), hypertension, atrial fibrilla-

tion, chronic kidney disease and worse symp-

toms severity (NYHA class III or greater); 15 

to factors with an adverse outcome that were 

present in 65 % to 85 % of studies female sex, 

diabetes mellitus as well as age 70 to 75 years, 

and a value of 10 when the factor was present 

in less than 65 % and more than 50 % of stud-

ies, namely obesity and coronary artery dis-

ease. There was a significant (p=0.009) corre-

lation between this new HFpEF prognostic 

score and one year clinical outcome (Figure 

4).  

 

CONCLUSION 

The application of machine learning strat-

egies to patients with HFpEF have consist-

ently identified discrete groups of individuals. 

The number of groups or phenogroups varies 

from three to six. The clinical findings asso-

ciated with the different phenotypes in 

> 85 % of studies were age, hypertension, 

atrial fibrillation, chronic kidney disease and 

worse symptoms severity; an adverse out-

come in 65 % to 85 % of studies was associ-

ated with diabetes mellitus and female sex 

and in less than 65 % of studies were the clin-

ical factors - body mass index or obesity, and 

coronary artery disease. The MAGGIC score 

was available in four studies. Focusing on the 

HFpEF phenotypes with the worst prognosis, 

found that the MAGGIC score correlated sig-

nificantly with poor outcome. A new and 

more simplified score, based on clinical fac-

tors, was proposed and correlated signifi-

cantly with adverse outcome in HFpEF. Three 

studies examined biomarkers in detail in their 

patient phenogroups. Several biomarkers 

were consistently elevated in phenogroups 

with adverse outcomes and suggest the under-

lying mechanism or pathophysiology specific 

for phenotypes with an adverse prognosis. 
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Figure 3: Correlation between the MAGGIC score in the papers that calculated it and the one year 
outcome 
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Figure 4: Correlation between the proposed HFpEF clinical score, in publications in which it could be 
calculated, and the one year outcome 
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