“Nano-ghosts”: Risk assessment of submicron-sized particles in food biased towards fictional “nano”
DOI:
https://doi.org/10.17179/excli2022-4630Keywords:
food additive, titanium dioxide, micron-sized particles, aggregate, agglomerateAbstract
Much confusion has been generated in the safety assessment of food-grade TiO2 (E171) by the comingling of studies conducted on submicron-sized particles with those examining the toxicity of more minuscule counterparts. As E171 displays a nano-sized tail in its particle distribution (up to 36 % of particles with a diameter < 100 nm), it was thought that potential hazards of this food additive can be extrapolated from studies on thoroughly nanoscale formulations. This simplistic procedure may, however, overestimate the effects of the nano-sized tail of E171 because TiO2 particles readily aggregate or agglomerate in aqueous suspensions and biological matrices. The resulting larger clusters display a reduced oral bioavailability in comparison to the same material in nano-sized dimensions. Also, even if taken up in trace amounts, the smaller particles likely remain appended to larger particles or clusters and these aggregates or conglomerates may nullify to a great extent their “nano” characteristics. The purpose of this review is, therefore, to reevaluate the literature on the toxicity of TiO2 particles focusing on studies that are directly relevant for the assessment of E171. The purpose is not to avert a ban on the use of E171 in food, which might well be justified in light of the uncertainties associated with this additive employed solely for its colorant properties. Instead, it will be important to avoid in the future this same bias towards a fictional “nano” hazard, especially when evaluating more innovative engineered particles that confer true benefits for example by enhancing nutritional properties, quality, freshness, traceability or sustainability of food.
Downloads
Published
How to Cite
License
Copyright (c) 2022 Hanspeter Naegeli, Corina Gsell
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).