“Nano-ghosts”: Risk assessment of submicron-sized particles in food biased towards fictional “nano”

Authors

  • Hanspeter Naegeli Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland, Phone: +41 44 635 87 63, E-mail: hanspeter.naegeli@uzh.ch https://orcid.org/0000-0001-5762-1359
  • Corina Gsell Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland https://orcid.org/0000-0003-4967-1457

DOI:

https://doi.org/10.17179/excli2022-4630

Keywords:

food additive, titanium dioxide, micron-sized particles, aggregate, agglomerate

Abstract

Much confusion has been generated in the safety assessment of food-grade TiO2 (E171) by the comingling of studies conducted on submicron-sized particles with those examining the toxicity of more minuscule counterparts. As E171 displays a nano-sized tail in its particle distribution (up to 36 % of particles with a diameter < 100 nm), it was thought that potential hazards of this food additive can be extrapolated from studies on thoroughly nanoscale formulations. This simplistic procedure may, however, overestimate the effects of the nano-sized tail of E171 because TiO2 particles readily aggregate or agglomerate in aqueous suspensions and biological matrices. The resulting larger clusters display a reduced oral bioavailability in comparison to the same material in nano-sized dimensions. Also, even if taken up in trace amounts, the smaller particles likely remain appended to larger particles or clusters and these aggregates or conglomerates may nullify to a great extent their “nano” characteristics. The purpose of this review is, therefore, to reevaluate the literature on the toxicity of TiO2 particles focusing on studies that are directly relevant for the assessment of E171. The purpose is not to avert a ban on the use of E171 in food, which might well be justified in light of the uncertainties associated with this additive employed solely for its colorant properties. Instead, it will be important to avoid in the future this same bias towards a fictional “nano” hazard, especially when evaluating more innovative engineered particles that confer true benefits for example by enhancing nutritional properties, quality, freshness, traceability or sustainability of food.

Published

2022-01-13

How to Cite

Naegeli, H., & Gsell, C. (2022). “Nano-ghosts”: Risk assessment of submicron-sized particles in food biased towards fictional “nano”. EXCLI Journal, 21, 279–299. https://doi.org/10.17179/excli2022-4630

Issue

Section

Review articles

Categories