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ABSTRACT 

Thermophilic proteins (TPPs) are critical for basic research and in the food industry due to their ability to maintain 

a thermodynamically stable fold at extremely high temperatures. Thus, the expeditious identification of novel TPPs 

through computational models from protein sequences is very desirable. Over the last few decades, a number of 

computational methods, especially machine learning (ML)-based methods, for in silico prediction of TPPs have 

been developed. Therefore, it is desirable to revisit these methods and summarize their advantages and disadvan-

tages in order to further develop new computational approaches to achieve more accurate and improved prediction 

of TPPs. With this goal in mind, we comprehensively investigate a large collection of fourteen state-of-the-art TPP 

predictors in terms of their dataset size, feature encoding schemes, feature selection strategies, ML algorithms, 

evaluation strategies and web server/software usability. To the best of our knowledge, this article represents the 

first comprehensive review on the development of ML-based methods for in silico prediction of TPPs. Among 

these TPP predictors, they can be classified into two groups according to the interpretability of ML algorithms 

employed (i.e., computational black-box methods and computational white-box methods). In order to perform the 

comparative analysis, we conducted a comparative study on several currently available TPP predictors based on 

two benchmark datasets. Finally, we provide future perspectives for the design and development of new compu-

tational models for TPP prediction. We hope that this comprehensive review will facilitate researchers in selecting 

an appropriate TPP predictor that is the most suitable one to deal with their purposes and provide useful perspec-

tives for the development of more effective and accurate TPP predictors. 
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INTRODUCTION 

Proteins perform varied functions in the 

body such as enzyme catalysis, ion and 

molecular transport, antibody production, and 

cellular/physiological activity regulation and 

thus, are considered as one of the most im-

portant biological macromolecules. The 

three-dimensional structure of proteins 

heavily influences their functioning (Burley 

et al., 2017). Furthermore, structure-based 

drug design heavily relies on complex protein 

inter-residue interactions such as mechanisms 

of protein folding, rates of folding and unfol-

ding, stability of protein structure, stability u-

pon mutation, recognition mechanisms of 

protein-protein, protein-nucleic acid and pro-

tein-ligand complexes (Gromiha, 2010; 

Gromiha et al., 2019). Moreover, the critical 

role of Thermophilic proteins (TPPs) in bio-

technology and chemical processing have al-

ready been established (Haki and Rakshit, 

2003). TPPs maintain their stability at high 

temperatures (80-100 °C) as well as in the en-

vironmental temperatures of the host orga-

nism (Gaucher et al., 2008; Gromiha et al., 

1999). Additionally, the stability of TPPs de-

pends upon a variety of amino acid properties 

such as shape, hydration energy change 

(Gibbs function) in native proteins, dipeptide 

composition, amino acid residue contacts, ion 

pair numbers, hydrogen bonds, packing, and 

aromatic clusters (Gromiha et al., 1999; Pica 

and Graziano, 2016). Out of all the aforemen-

tioned properties, TPP stability relies mostly 

on hydrophobicity as the most important fea-

ture, followed by ion pairs and hydrogen 

bonds (Gromiha and Nagarajan, 2013). 

Therefore, in order to design proteins for spe-

cific medical or industrial applications, a 

thorough understanding of the molecular ba-

sis of protein thermostability is critical 

(Gromiha et al., 2019). Furthermore, the ease 

of TPP purification and their ability to with-

stand long periods of industrial conditions co-

mes from their natural resistance to denatura-

tion by chemical compounds (i.e., detergents, 

surfactants, oxidizing agents, and proteases) 

(Diaz et al., 2011; Habbeche et al., 2014; 

Huang et al., 2012b). Of note, survival of 

therapeutic proteins in blood is extended with 

higher thermostability (Narasimhan et al., 

2010). Several advantages of TPPs include re-

duced contamination, mixes easily with low 

viscous agents while maintaining a high mass 

transfer rate as well as achieving greater solu-

bility of products and substrates (Vieille and 

Zeikus, 2001). Furthermore, TPPs are advan-

tageous in high-temperature pelleting proces-

ses (Rodriguez et al., 2000) as well as in the 

isomerization of glucose through endother-

mic reactions to generate high fructose syrups 

(Xu et al., 2014). Although experimental me-

thods are the gold standard in verifying ther-

mostability of proteins, these methods are 

usually labor-intensive, time-consuming and 

expensive. Thus, the rapid and accurate iden-

tification of TPPs from a large collection of 

proteins is highly advantageous and cost-

effective.  

Over the last few decades, a number of 

computational methods, especially machine 

learning (ML)-based methods, for in silico 

prediction of TPPs have been developed. The 

development of all these existing TPP predic-

tors involves three main phases as summa-

rized in Figure 1. The 1st phase is dataset pre-

paration to form training and independent da-

tasets. The 2nd phase is feature extraction and 

feature optimization. The 3rd phase is to train 

and evaluate a prediction model. The inde-

pendent dataset is used to validate the effec-

tiveness and robustness of the prediction mo-

del. Finally, the optimal prediction model is 

selected to establish a web server. We catego-

rize the existing TPP predictors as listed in 

Table 1 into two groups according to the in-

terpretability of the ML algorithms employed. 

The first group are the computational black-

box methods, and there are nine out of four-

teen existing TPP predictors (i.e., Gromiha et 

al.’s method (Gromiha and Suresh, 2008), 

ThermoPred (Lin and Chen, 2011), Wang et 

al.’s method (2011), Nakariyakul et al.’s me-

thod (2012), KNN-ID (Zuo et al., 2013), 

PSSM400_pKa (Fan et al., 2016), Tang et 

al.’s method (2017), Li et al.’s method (2019) 

and Feng et al.’s method (2020)) in this group. 
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Figure 1: The overall framework of TPP predictors using machine learning methods. The 1st phase is 
dataset preparation to form training and independent datasets. The 2nd phase is feature extraction and 
feature optimization. The 3rd phase is to train and evaluate a prediction model. The independent dataset 
is used to validate the effectiveness and robustness of the prediction model. Finally, the optimal predic-
tion model is selected to establish a web server. 
 
 

The second group are the computational 

white-box methods, and there are five out of 

fourteen existing TPP predictors (i.e., Zhang 

et al.’s method (Zhang and Fang, 2006), Lo-

gitBoost (Zhang and Fang, 2007), Wu et al.’s 

method (2009), GA-MLR (Wang and Li, 

2014) and SCMTPP (Charoenkwan et al., 

2022)) in this group. 

To the best of our knowledge, this article 

represents the first comprehensive review on 

the development of ML-based methods for in 

silico prediction of TPPs. In this study, our 

aim is to conduct an empirical comparison 

and analysis of fourteen existing TPP predic-

tors in terms of multiple perspectives, inclu-

ding their feature encoding schemes, feature 

selection strategies, ML algorithms, evalua-

tion strategies and web server/software usabi-

lity as summarized in Table 1. First, we revie-

wed available training and independent data-

sets employed for developing the current 

TPPs predictors. The detailed information of 

these datasets are provided in Table 2. Se-

cond, the performance of various TPP predic-

tors on two benchmark datasets (i.e., the Gro-

miha2007 (Gromiha and Suresh, 2008) and 

javascript:;
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Lin2011 (Lin and Chen, 2011)) and two inde-

pendent datasets (i.e., the Zhang2007 (Zhang 

and Fang, 2006) and Charoenkwan2021 

(Charoenkwan et al., 2022)) were compared 

and discussed. Our comparative results de-

monstrate that ThermoPred outperformed the 

competing TPP predictors in terms of both 

predictive performance and community uti-

lity, while SCMTPP outperformed the com-

peting TPP predictors in terms of high inter-

pretability and simplicity. Finally, we discuss 

the advantages and disadvantages of the cur-

rent TPP predictors and provided future per-

spectives for the design and development of 

new computational models for TPP predic-

tion. 

 

MATERIALS AND METHODS 

Framework of TPP prediction using  

machine learning-based approaches 

The overall framework of TPP predictors 

using machine learning methods involves 

three main phases as summarized in Figure 1. 

The 1st phase is to prepare the high-quality 

dataset to generate training (for cross-valida-

tion and parameter optimization purposes) 

and independent (for assessing and validating 

the transferability and reliability) datasets. 

The 2nd phase is feature extraction and fea-

ture optimization. Feature extraction works to 

represent each protein sequence to capture the 

key information of TPPs and non-TPPs. The 

detailed information of feature encodings 

employed is recorded in Table 1. Since each 

protein sequence is represented as a high di-

mensional feature vector, it is well-known 

that the feature optimization step might help 

to exclude irrelevant/noisy features and lead 

to the improved performance of the trained 

model. Thus, the 3rd phase is to train and eva-

luate the prediction model. The independent 

dataset is used to validate the effectiveness 

and robustness of the prediction model. Fi-

nally, the optimal prediction model is selected 

to establish a web server. The details of web 

server availability and usability for TPP pre-

diction is recorded in Table 1. 

 

Datasets 

Detailed information of all the training 

and independent datasets used for developing 

the existing methods are recorded in Table 2. 

Among these datasets, the Gromiha2007 

(Gromiha and Suresh, 2008) (used for deve-

loping Gromiha et al.’s method (Gromiha and 

Suresh, 2008), KNN-ID (Zuo et al., 2013), 

and PSSM400_pKa (Fan et al., 2016)) and 

Lin2011 (Lin and Chen, 2011) (used for de-

veloping ThermoPred (Lin and Chen, 2011), 

Nakariyakul et al.’s method (Nakariyakul et 

al., 2012), GA-MLR (Wang and Li, 2014), 

Tang et al.’s method (Tang et al., 2017), Li et 

al.’s method (Li et al., 2019) and Feng et al.’s 

method (Feng et al., 2020)) datasets were two 

well-known training datasets used for develo-

ping almost all of the existing methods. As 

described in an article (Gromiha and Suresh, 

2008), the training dataset of Gromiha2007 

were directly derived from the Zhang2007 da-

taset (3521 TPPs and 4895 non-TPPs) and 

TPPs and non-TPPs with more than 40 % se-

quence identity were then excluded using the 

CD-HIT program. Finally, the training dataset 

of the Gromiha2007 dataset contained 1609 

TPPs and 3075 non-TPPs. In case of the 

Lin2011 dataset (915 TPPs and 793 non-

TPPs), Lin et al. collected TPPs and non-

TPPs from 136 prokaryotic organisms extrac-

ted from the Universal Protein Resource 

(UniProt). Unfortunately, only the Lin2011 

dataset can be accessed at http://lin-

group.cn/server/ThermoPredv1. Recently, 

our group constructed an up-to-date dataset 

from several previous studies (Fan et al., 

2016; Lin and Chen, 2011; Zhang and Fang, 

2006) consisting of 6579 TPPs. After exclu-

ding redundant sequences using the CD-HIT 

program, 1823 TPPs and 3124 non-TPPs 

were obtained (called the Charoenkwan2021 

dataset). The Charoenkwan2021 dataset can 

be downloaded at http://pmlabstack.py-

thonanywhere.com/SCMTPP. 

 

http://lin-group.cn/server/ThermoPredv1
http://lin-group.cn/server/ThermoPredv1
http://pmlabstack.pythonanywhere.com/SCMTPP
http://pmlabstack.pythonanywhere.com/SCMTPP
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State-of-the-art computational approaches 

for TPP prediction 

More than ten ML-based approaches have 

been developed for TPP prediction. These ap-

proaches were developed using a variety of 

aspects, including the benchmark datasets, 

feature descriptors, feature section methods 

and ML algorithms, etc. In Table 1, we sum-

marize 13 existing sequence-based TPP pre-

dictors along with their employed feature en-

coding schemes, ML algorithms and evalua-

tion strategies. Most TPP predictors were trai-

ned and constructed in a five-step manner, 

which involves data preparation, feature 

extraction, feature selection, model optimiza-

tion and development and web server 

construction. These existing sequence-based 

TPP predictors are categorized into two clas-

ses according to the interpretability of ML al-

gorithms employed (Kurgan et al., 2009; 

Liang et al., 2021; Shoombuatong et al., 

2017), which are described in detail below. 
 

 

Table 1: A list of currently available machine learning-based methods for TPP identification summarized 
in this review 

Method Year Classifiera Featuresb Evaluation 
strategyc 

Web server 
availability 

status 

Zhang et al.’s method 
(Zhang and Fang, 2006) 

2006 PLS AAC Holdout No 

LogitBoost (Zhang and 
Fang, 2007) 

2007 LogitBoost AAC 5CV/IND No 

Gromiha et al.’s method 
(Gromiha and Suresh, 
2008) 

2008 NN AAC 5CV/IND No 

Wu et al.’s method (Wu 
et al., 2009) 

2009 DT PCP 10CV No 

ThermoPred (Lin and 
Chen, 2011) 

2011 SVM AAC, GGAP LOOCV Yes, active 

Wang et al.’s method 
(Wang et al., 2011) 

2011 SVM AAC, PCP, CTD LOOCV No 

Nakariyakul et al.’s me-
thod (Nakariyakul et al., 
2012) 

2012 SVM AAC, DPC 5CV-10CV/ 
LOOCV/IND 

No 

KNN-ID (Zuo et al., 2013) 2013 KNN AAC LOOCV/IND Yes, inactive 
GA-MLR (Wang and Li, 
2014) 

2014 MLR AAC, GGAP 5CV/IND No 

PSSM400_pKa (Fan et 
al., 2016) 

2016 SVM AAC, pka, PSSM 10CV/IND No 

Tang et al.’s method 
(Tang et al., 2017) 

2017 SVM k-mer 5CV No 

Li et al.’s method (Li et 
al., 2019) 

2019 Voting AAC, DDE, TC, 
CKSAAGP 

10CV No 

Feng et al.’s method 
(Feng et al., 2020) 

2020 SVM ACC, DPC, 
PCP,RAAC 

10CV/IND No 

SCMTPP (Charoenkwan 
et al., 2022) 

2021 SCM GGAP 10CV/IND Yes, active 

a DT: decision tree, KNN: k-nearest neighbor, MLR: multiple linear regression, NN: neural networks, PLS: partial least-square 
regression, SCM: scoring card method, SVM: support vector machine 
b AAC: amino acid composition, CKSAAGP: composition of kspaced amino acid group pairs, CTD: Composition-Transition-Distri-
bution, DDE: Dipeptide deviation from expected mean, DPC: dipeptide composition, DPS: dipeptide propensity score; GGAP: g-
gap dipeptide composition, k-mer: fragment-based technique; pka: acid dissociation constant, PCP: physicochemical properties, 
PseACC: pseudo amino acid composition, PSSM: position specific scoring matrix, RACC: reduce amino acid composition, TC: 
tripeptide composition 
c 5CV: 5-fold cross-validation, 10CV: 10-fold cross-validation, IND: independent test, LOOCV: leave-one-out cross-validation 
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Table 2: A summary of the training and independent test datasets used for developing the existing TPP 
predictors 

Dataseta CD-HIT 
threshold 

Training dataset Independent test  
dataset 

Dataset 
availability 

Number 
of TPPs 

Number of 
non-TPPs 

Number 
of TPPs 

Number of 
non-TPPs 

Zhang2006 1.0 76 81 20 20 Yes 

Zhang2007 1.0 3521 4895 382 325 No 

Gromiha2007 0.4 1609 3075 382 325 No 

Wu2009 1.0 580 878 - - No 

Lin2011 0.4 915 793 - - Yes 

Wang2011 0.25 209 209 - - No 

Nakariyakul2012 b,d 0.4 915 793 76 81 No 

Zuo2013 c,d 0.4 1609 3075 76 81 No 

Wang2014 b,d 0.4 915 793 76 81 No 

Fan2016 c,d 0.4 1609 3075 76 81 No 

Tang2017 b 0.4 915 793 - - No 

Li2019 b 0.4 915 793 - - Yes 

Feng2020 b 0.4 915 793 106 101 Yes 

Charoenkwan2021 0.4 1482 1482 371 371 Yes 

a Datasets’ names are created by using the family name of the first author along with the publication year from the correspond-
ing literature. 
b Training dataset was directly obtained from the Lin2011 dataset 
c Training dataset was directly obtained from the Gromiha2007 dataset 
d Independent dataset was directly obtained from the Zhang2006 dataset 

 

 

Performance evaluation and evaluation 

strategy 

The predictive performance of our propo-

sed model, baseline models and the two state-

of-the-art methods is evaluated and compared 

using five common performance measures as 

follows: accuracy (ACC), sensitivity (Sn), 

specificity (Sp), Matthew's Correlation Coef-

ficient (MCC) and area under the receiver-

operating curves (AUC) (Azadpour et al., 

2014; Charoenkwan et al., 2021d). These per-

formance measures are described by the follo-

wing equations: 

 

ACC =
TP + TN

(TP + TN + FP + FN)
 (1)  

Sn =
TP

(TP + FN)
 (2)  

Sp =
TN

(TN + FP)
 (3)  

where TP, TN, FP and FN represent the num-

ber of true positives, true negatives, false po-

sitive and false negatives, respectively (Basith 

et al., 2020; Shoombuatong et al., 2017; Su et 

al., 2020a). It is well-known that Sn and Sp 

measure the predictive ability for two classes: 

positive and the negative, respectively. ACC, 

MCC and AUC evaluate the overall perfor-

mance of the predictive model.  

STATE-OF-THE-ART  

COMPUTATIONAL APPROACHES 

FOR TPP PREDICTION 

More than ten ML-based approaches have 

been developed for TPP prediction. These ap-

proaches were developed using a variety of 

aspects, including the benchmark datasets, 

feature descriptors, feature section methods 

and ML algorithms, etc. In Table 1, we sum-

marize 13 existing sequence-based TPP pre-
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dictors along with their employed feature en-

coding schemes, ML algorithms and evalua-

tion strategies. Most TPP predictors were trai-

ned and constructed in a five-step manner, 

which involves data preparation, feature 

extraction, feature selection, model optimiza-

tion and development and web server 

construction. These existing sequence-based 

TPP predictors are categorized into two clas-

ses according to the interpretability of ML al-

gorithms employed (Kurgan et al., 2009; 

Liang et al., 2021; Shoombuatong et al., 

2017), which are described in detail below. 

 
Prediction methods based on computational 

black-box methods 

Among several ML algorithms used in 

this aspect, KNN (Zuo et al., 2013), NN 

(Gromiha and Suresh, 2008) and SVM (Fan 

et al., 2016; Feng et al., 2020; Lin and Chen, 

2011; Nakariyakul et al., 2012; Tang et al., 

2017; Wang et al., 2011) are known as Black-

box approaches. Kurgan et al. (2009) descri-

bed black-box methods as ML methods that 

cannot directly determine which features pro-

vide essential contribution to the prediction 

performance. As can be seen from Table 1, 

there are 6 out of 14 existing sequence-based 

predictors that were trained and developed by 

using SVM method (i.e., ThermoPred (Lin 

and Chen, 2011), Wang et al.‘s method 

(2011), Nakariyakul et al.’s method (2012), 

PSSM400_pKa (Fan et al., 2016), Tang et 

al.’s method (2017), Li et al.’s method (2019) 

and Feng et al.’s method (2020)). SVM has 

been successfully applied to solve variant re-

search questions in computational biology 

and bioinformatics. The basic idea of SVM is 

to map the given input features into a high-

dimensional space using kernel functions and 

find a maximum margin hyperplane that can 

separate positive samples from negative 

samples with a minimal misclassification rate 

(Chen et al., 2016; Manavalan and Lee, 

2017). There are three well-known and com-

monly used kernel functions in SVM, inclu-

ding gaussian, polynomial and radial basis 

function (RBF). Particularly, the develop-

ment of SVM models involves the optimiza-

tion of two critical parameters, i.e. C and γ re-

present the regularization parameter and 

kernel parameter, respectively (Arif et al., 

2020; Charoenkwan et al., 2020, 2021d).  

In 2011, Lin et al. developed the first 

SVM-based approach for identifying TPPs 

(called ThermoPred) by using the Lin2011 

dataset containing 915 TPPs and 793 non-

TPPs. ThermoPred was trained with two fea-

ture descriptors (i.e., AAC and GGAP). In or-

der to improve the predictive performance of 

ThermoPred, ANOVA technique was used to 

determine informative g-gap dipeptides. As a 

result, the informative g-gap dipeptides con-

sisted of EE, KE, EI, I-K, I-E, E–K, E–E, K–

E, Q–A and E---K, where – represents the gap 

of residues. In addition, the Sn, Sp and ACC 

of ThermoPred were 82.4 %, 93.0 % and 

89.4 %, respectively, based on 5-fold cross-

validation test. In the same year, Wang et al. 

developed another SVM-based approach for 

identifying TPPs. Their SVM-based approach 

was trained with three types of feature 

descriptors, including AAC, CTD and PCP. 

In addition, three feature selection methods 

(i.e., filter method, relief algorithm and ge-

netic algorithm) were employed and used to 

determine informative features. Amongst 

these three feature selection methods, the hig-

hest ACC of 95.93 % was achieved by using 

genetic algorithm. The informative features 

derived from the genetic algorithm contained 

A, Q, I, K, F, Y, AA, AD, AQ, AS, RI, RK, 

DA, DQ, EE, EK, GQ, GI, GS, IN, IV, LY, 

MI, PA, SA, SQ, TI, YV, VY and CTD10. 

Recently, Feng et al. proposed another SVM-

based approach trained with four feature 

descriptors (i.e., ACC, DPC, PCP and RAAC) 

(Feng et al., 2020). Then, principal compo-

nent analysis was used to reduce irrelevant 

features and the final feature set contained 12 

informative features.  

In case of other ML algorithms employed, 

Gromiha et al. (Gromiha and Suresh, 2008) 

and Zuo et al. (2013) applied NN-based (cal-

led Gromiha et al.’s method) and KNN-based 

(called KNN-ID) models, respectively, trai-

ned with AAC to develop TPP predictors. For 
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the 10-fold cross-validation results, ACC, Sn, 

and Sp of Gromiha et al.’s method (Gromiha 

and Suresh, 2008) were 89.00 %, 83.30 % and 

92.00 %, respectively, while ACC, Sn, and Sp 

of KNN-ID (Zuo et al., 2013) were 90.66 %, 

88.37 % and 92.24 %, respectively. To im-

prove the accurate prediction of TPPs, Li et 

al. (2019) employed an ensemble strategy. To 

the best of the authors’ knowledge, there is 

only one TPP predictor in existence that was 

constructed by using the ensemble strategy. 

Several previous studies have indicated that 

ensemble-based models are effective to pro-

vide improved performance over single-based 

models (Basith et al., 2022; Hasan et al., 

2020; Kabir et al., 2022; Liang et al., 2021; 

Manavalan et al., 2019a; Rao et al., 2020). 

Their ensemble model provided a cross-vali-

dation ACC of 93.03 %. 

 

Prediction methods based on computational 

white-box methods 

Unlike black-box methods, white-box 

models are able to determine which features 

provide essential contribution to the predic-

tion performance, such as DT (Wu et al., 

2009), MLR (Wang and Li, 2014), PLS 

(Zhang and Fang, 2006) and SCM (Charo-

enkwan et al., 2022). Amongst several white-

box methods, SCM has been indicated to 

achieve comparable performance to those of 

black-box methods, such as NN and SVM 

(Charoenkwan et al., 2013, 2021c, e, 2022). 

Huang et al. first introduced the original SCM 

method (Huang et al., 2012a), while Charo-

enkwan et al. developed an improved version 

by integrating both global and local sequence 

information (Charoenkwan et al., 2021c). The 

contribution of the SCM method is summa-

rized in the following three aspects. First, the 

SCM method can discriminate positives from 

negatives by using only a single threshold va-

lue, emphasizing its ease-of-use and interpre-

tability. Second, since the SCM method is 

known as a single feature-based model, indi-

cating that this method could achieve better 

computational efficiency as compared to 

complex methods, such as SVM and ensem-

ble approaches. Third, the SCM-derived pro-

pensity scores of 20 amino acids and 400 

dipeptides are useful for characterizing and 

analyzing various functions of proteins and 

peptides.  

In 2006, Zhang et al. proposed the first se-

quence-based predictor based on PLS algo-

rithm for identifying TPPs based on 76 TPPs 

and 76 non-TPPs. Their method had the hig-

hest ACC for TPPs and non-TPPs prediction, 

which was 75 % and 85 %, respectively. Most 

recently, our group developed a new se-

quence-based predictor (called SCMTPP) for 

identifying and characterizing TPPs using e-

stimated propensity scores of dipeptides. 

Furthermore, we established an up-to-date 

and high-quality dataset containing 1853 

TPPs and 3233 non-TPPs from several publi-

shed literatures. SCMTPP was developed u-

sing SCM method in conjunction with GGAP. 

SCMTPP based on the propensity scores of 

GGAP (g=0) was beneficial for TPP predic-

tion with ACC of 88.30 %, MCC of 0.766 and 

AUC of 0.926 as evaluated by 10-fold cross-

validation test. When compared with popular 

ML methods (i.e., DT, KNN and naive Bayes 

(NB)) on the training dataset, it could be no-

ticed that SCMTPP outperformed those of 

DT-based, KNN-based and NB-based classi-

fiers. Remarkably, SCMTPP’s ACC was 

>7.05 %, >3.78 % and >1.86 % higher than 

DT-based, KNN-based and NB-based mo-

dels, respectively. 

 

RESULTS AND DISCUSSION 

Comparative results on 5-fold and 10-fold 

cross-validation tests using the  

Gromiha2007 and Lin2011 datasets 

In this section, we evaluated and com-

pared the performance of different TPP pre-

dictors in terms of ACC, Sn and Sp using the 

two benchmark datasets (i.e., Gromiha2007 

and Lin2011). To be specific, the Gromiha-

2007 dataset was used to evaluate five out of 

the fourteen existing TPP predictors (i.e., 

Gromiha et al.’s method, Wu et al.’s method, 

ThermoPred, KNN-ID, and PSSM400_pKa), 

while the Lin2011 dataset was used to evalute 
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the six out of the fourteen existing TPP pre-

dictors (i.e., Gromiha et al.’s method, Ther-

moPred, Nakariyakul et al.’s method, GA-

MLR, Tang et al.’s method and Feng et al.’s 

method). 

The performance evaluation results of 

these two benchmark datasets are summa-

rized in Figures 2 and Tables 3-4. As seen in 

Figure 2 and Table 3, ThermoPred outperfor-

med the four competing TPP predictors (i.e., 

Gromiha et al.’s method, Wu et al.’s method, 

KNN-ID, and PSSM400_pKa) in terms of 

model complexity based on the Gromiha2007 

dataset. Taking into consideration the cross-

validation performance, PSSM400_pKa 

achieved the best performance in terms of 

ACC (93.53 %), Sn (89.50 %) and Sp 

(95.64 %) (Figure 2A). In the meanwhile, 

ThermoPred achieved the second-best perfor-

mance in terms of ACC (93.53 %) and Sp 

(95.64 %). In terms of model complexity, 

ThermoPred (10D) performed better than 

PSSM400_pKa (460D) (Figure 2B). One of 

the major limitations of PSSM400_pKa was 

that there was no web server provided for this 

study. Therefore, its utility is limited to expe-

rimental scientists. In case of the Lin2011 da-

taset, Table 4 shows that ThermoPred still 

outperformed competing TPP predictors (i.e., 

Gromiha et al.’s method, Nakariyakul et al.’s 

method, GA-MLR, Tang et al.’s method and 

Feng et al.’s method) in terms of model com-

plexity (Figure 2C-2D). It could be noticed 

that Feng et al.’s method achieved the best 

performance in terms of ACC (98.20 %), Sn 

(98.20 %) and Sp (98.20 %), while GA-MLR 

achieved the second-best performance in 

terms of the three performance metrics (i.e., 

ACC (95.61 %), Sn (95.41 %) and Sp 

(95.84 %)). 

 

 

 
Figure 2: Performance comparison of existing TPP predictors on the Gromiha2007 (A-B) and Lin2011 
(C-D) datasets. (A, C) represent the performance in terms of ACC, Sn and Sp. (B, D) represent the 
feature number used in existing TPP predictors. 
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Table 3: Performance comparison of Gromiha et al.’s method, Wu et al.’s method, ThermoPred, KNN-
ID, PSSM400_pK on the Gromiha2007 dataset 

Method Number of  
features 

ACC (%) Sn (%) Sp (%) 

Gromiha et al.’s method a,b 20 89.00 83.30 92.00 

Wu et al.’s method a,c 14 83.90 81.50 85.20 

ThermoPred a,d 10 90.80 85.40 93.60 

KNN-ID a,d 20 90.66 88.37 92.24 

PSSM400_pK a,d 460 93.53 89.50 95.64 

a Performance of existing methods were obtained from Fan et al. 2016. 
b Results based on 5-fold cross-validation 
c Results based on 10-fold cross-validation 
d Results based on leave-one-out cross-validation 

 

Table 4: Performance comparison of Gromiha et al.’s method, ThermoPred, Nakariyakul et al.’s method, 
GA-MLR, Tang et al.'s method and Feng et al.’s method on the Lin2011 dataset 

Method Number of  
features 

ACC (%) Sn (%) Sp (%) 

Gromiha et al.’s method a,d 20 93.00 93.70 93.30 

ThermoPred a,f 10 93.27 93.77 92.69 

Nakariyakul et al.’s method a, e 28 93.90 93.80 94.10 

GA-MLR a,d 76 95.61 95.41 95.84 

Tang et al.'s method a,d 29 94.40 94.80 94.10 

Feng et al.’s method a,e 12 98.20 98.20 98.20 

a Performance of existing methods were obtained from Tang et al., 2017. 
b Performance of existing methods were obtained from Nakariyakul et al., 2012. 
c Performance of existing methods were obtained from Wang and Li, 2014. 
d Results based on 5-fold cross-validation 
e Results based on 10-fold cross-validation 
f Results based on leave-one-out cross-validation 

 

 

From Tables 3-4, the existing TPP predic-

tors were trained and optimized based on the 

two benchmark datasets and several observa-

tions can be made. First, PSSM400_pKa and 

Feng et al.’s method achieved a better perfor-

mance compared with the competing TPP 

predictors on the Gromiha2007 and Lin2011 

datasets, respectively. However, their usage 

and utility is quite limited to experimental sci-

entists. Meanwhile, among several TPP pre-

dictors developed using the two benchmark 

datasets, only ThermoPred was implemented 

as a web server for the prediction of TPPs. Se-

cond, there were two TPP predictors that were 

evaluated on the two benchmark datasets (i.e., 

Gromiha et al.’s method and ThermoPred). 

ThermoPred achieved a competitive perfor-

mance on the Gromiha2007 and Lin2011 da-

tasets when compared with PSSM400_pKa 

and Feng et al.’s method, respectively. Alto-

gether, these comparative results indicated 

that ThermoPred could outperform the com-

peting TPP predictors in terms of both predic-

tive performance and community utility. 

 

Comparative results on the independent  

test using the Zhang2007 and  

Charoenkwan2021 datasets 

Prediction models having a high cross-va-

lidation performance might not perform well 

on the independent datasets (Charoenkwan et 

al., 2021a, b; Kabir et al., 2022; Shoom-

buatong et al., 2017). Thus, in this section, we 

conducted an independent test to validate and 

assess the generalization ability of the exis-

ting TPP predictors. As can be seen from 

Table 2, different TPP predictors were vali-

dated using different independent datasets. 
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Moreover, among variant independent da-

tasets, there were three well-known indepen-

dent datasets derived from the Zhang2006 (76 

TPPs and 81 non-TPPs) (Zhang and Fang, 

2006), Zhang2007 (382 TPPs and 325 non-

TPPs) (Zhang and Fang, 2007) and Charoenk-

wan2021 (371 TPPs and 371 non-TPPs) 

(Charoenkwan et al., 2022) datasets. For con-

venience of discussion, we denote these three 

independent datasets as Zhang2006TS, 

Zhang2007TS and Charoenkwan2021TS, 

respectively. 

For the Zhang2006TS dataset, it was first 

used as the training dataset to develop Zhang 

et al.’s method. In 2012, Nakariyakul et al., 

first applied the Zhang2006TS dataset to eva-

luate their model. In the meanwhile, the 

Zhang2006TS dataset was used to assess the 

performance of KNN-ID, GA-MLR and 

PSSM400_pKa. It should be noted that the 

Lin2011 (915 TPPs and 793 non-TPPs) and 

Gromiha2007 (1609 TPPs and 3075 non-

TPPs) datasets were utilized to train and opti-

mize Nakariyakul et al.’s method, GA-MLR 

and KNN-ID and PSSM400_pKa, respec-

tively (Table 2). As can be seen from Table 5, 

PSSM400_pKa achieved the highest ACC, Sn 

and Sp of 97.45 %, 97.37 % and 97.53 %, 

respectively, while the second-best method 

was KNN-ID in term of ACC. For the 

Zhang2007TS dataset, it was constructed by 

Zhang et al (Zhang and Fang, 2007). This da-

taset was utilized to evaluate the performance 

of LogitBoost and Gromiha et al.’s method. 

LogitBoost and Gromiha et al.’s method were 

trained and optimized using different datasets 

(Table 2). It could be noticed that LogitBoost 

outperformed Gromiha et al.’s method in 

terms of ACC (92.08 %) and Sp (91.70 %) 

(Table 5). This might be due to the fact that 

LogitBoost were trained using larger samples. 

For the last independent dataset, it was 

constructed by Charoenkwan et al. (2021e). 

This dataset was utilized to evaluate the per-

formance of ThermoPred and SCMTPP. 

From Table 5, it could be observed that 

SCMTPP achieved a very comparable perfor-

mance to ThermoPred in terms of ACC, Sp 

and Sn.

 
 

Table 5: Performance comparison of LogitBoost, Gromiha et al.’s method, ThermoPred and SCMTPP 
on three independent datasets 

Dataset Method Number of 
features 

ACC (%) Sn (%) Sp (%) 

Zhang2006TS Nakariyakul et al.’s method a 28 86.60 93.40 80.3 

 KNN-ID b 20 94.20 - - 

 GA-MLR a 76 92.99 96.05 90.12 

 PSSM400_pKac 460 97.45 97.37 97.53 

Zhang2007TS LogitBoost d 20 92.08 91.70 92.52 

 Gromiha et al.’s method e 20 91.30 87.60 95.70 

Charoenkwan2021TS ThermoPred f 10 86.00 93.80 78.20 

 SCMTPP f 400 86.50 84.90 88.10 

a Performance of existing methods were obtained from Wang and Li, 2014. 
b Performance of existing methods were obtained from Zuo et al., 2013. 
c Performance of existing methods were obtained from Fan et al., 2016. 
d Performance of existing methods were obtained from Zang and Fang, 2006. 
e Performance of existing methods were obtained from Gromiha et al.‘s method (Gromiha and Suresh, 2008). 
f  Performance of existing methods were obtained from Charoenkwan et al., 2022. 
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Characterization of TPPs based on  

sequence information 

As mentioned above, there were five out 

of fourteen existing TPP predictors consisting 

of Zhang et al.’s method (Zhang and Fang, 

2006), LogitBoost (Zhang and Fang, 2007), 

Wu et al.’s method (Wu et al., 2009), GA-

MLR (Wang and Li, 2014) and SCMTPP 

(Charoenkwan et al., 2022) considered as the 

computational white-box methods. Amongst 

these white-box methods developed for the 

prediction and analysis of TPPs, SCMTPP as 

introduced by Charoenkwan et al. (2022), out-

performed the competing TPP predictors in 

terms of high interpretability and simplicity. 

To be specific, SCMTPP was trained and op-

timized using an up-to-date dataset containing 

1853 TPPs and 3233 non-TPPs. By analysis 

of the propensity scores of twenty amino a-

cids to be TPPs, Charoenkwan et al., reported 

that the five top-ranked important amino acids 

to be TPPs were Glu, Lys, Val, Arg and Ile 

with propensity scores of 510.18, 480.00, 

470.75, 464.08 and 435.65, respectively. On 

the other hand, the five top-ranked important 

amino acids to be non-TPPs were Gln, Thr, 

Ala, Asn and Phe with propensity scores of 

255.43, 306.00, 323.63, 332.48 and 351.25, 

respectively. This group also indicated that 

the top five informative dipeptides to be TPPs 

consisted of EE, GW, SG, WS and KY with 

propensity scores of 1000, 979, 956, 952 and 

908, respectively, while the top five informa-

tive dipeptides to be non-TPPs consisted of 

AA, LQ, NM, FW and MQ with propensity 

scores of 0, 11, 27, 41 and 47, respectively. In 

addition, SCMTPP was applied to determine 

informative physicochemical properties 

(PCPs). Charoenkwan et al. (2021e) reported 

that FUKS010101 (R = 0.616), FUKS010101 

(R = 0.523) and FUKS010109 (R = 0.307) 

were considered as the top three informative 

PCP used for analyzing TPPs and non-TPPs. 

Charoenkwan et al.’s analysis showed that the 

content of hydrophobic amino acids in TPPs 

was not different from non-TPPs. However, 

all the results from Charoenkwan et al.’s ana-

lysis were derived from primary sequence in-

formation, while only selected TPPs and non-

TPPs were used to analyze their PCPs. Thus, 

Charoenkwan et al.’s analysis was limited due 

to the small size of selected TPPs and non-

TPPs used in their studies. 

 

Web server availability and usability 

As seen in Table 1, there are a total of 14 

sequence-based predictors, but only two of 

them (ThermoPred and SCMTPP) were im-

plemented as web servers for the prediction of 

TPPs. ThermoPred is an SVM-based predic-

tor trained with the informative g-gap dipep-

tides consisted of EE, KE, EI, I-K, I-E, E--K, 

E--E, K--E, Q--A and E---K derived from A-

NOVA approach. ThermoPred is freely 

available at http://lin-group.cn/server/Ther-

moPredv1. On the contrary, SCMTPP was 

constructed using the propensity scores of 

GGAP (g=0) and a threshold value of 418, 

where an unknown protein P is predicted as 

TPP if its TPP score is greater than the 

threshold value, otherwise this protein is pre-

dicted as non-TPP. SCMTPP is freely 

available at http://pmlabstack.py-

thonanywhere.com/SCMTPP. 

 

PROSPECTIVE STRATEGIES FOR  

IMPROVING THE PREDICTION  

PERFORMANCE OF TPPS 

In this section, we discuss the advantages 

and disadvantages of the current TPPs predic-

tors. In addition, we provided future perspec-

tives for the design and development of new 

computational models for TPP prediction. 

Hereafter, four crucial aspects for further im-

proving the performance of TPP predictions 

are discussed and explored. 

First, all the existing TPP predictors were 

trained using sequence-based features. 

Among several of the sequence-based fea-

tures employed, ACC was the most frequently 

used one (Table 1). Numerous previous stu-

dies have indicated that sequence-to-vector 

encodings has been successfully employed 

for feature extraction in order to facilitate the 

characterization and analysis of protein, pep-

tide and DNA sequences (Le et al., 2019; 

http://lin-group.cn/server/ThermoPredv1
http://lin-group.cn/server/ThermoPredv1
http://pmlabstack.pythonanywhere.com/SCMTPP
http://pmlabstack.pythonanywhere.com/SCMTPP
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Tahir et al., 2020; Xie et al., 2021). Unlike se-

quence-based features, sequence-to-vector 

encodings were able to provide better perfor-

mance in many cases (Charoenkwan et al., 

2021f; Lv et al., 2021; Shah and Ou, 2021; 

Zulfiqar et al., 2021). To the best of our know-

ledge, there is no TPP predictor reported that 

is trained and optimized using sequence-to-

vector encodings.  

Second, there is no DL-based TPP predic-

tor in existence in this aspect. Meanwhile, 

with a large number of characterized proteins 

in recent years, the utility of DL techniques 

has been reported by numerous studies in bi-

ological research (Charoenkwan et al., 2021f; 

Lv et al., 2021; Shah and Ou, 2021; Xie et al., 

2020; Zulfiqar et al., 2021). Specifically, DL-

based methods can extract features from pro-

tein, peptide and DNA sequences directly by 

using natural language processing (NLP) 

technique without the need of feature en-

codings. To date, DL-based methods are 

effective and powerful built-in feature extrac-

tors. For instance, our group developed 

BERT4Bitter, which was a bidirectional en-

coder representation from transformers 

(BERT)-based model for the identification of 

bitter peptides (Charoenkwan et al., 2021f). 

We compared BERT4Bitter with popular 

ML-based methods developed with ANN, 

DT, KNN, SVM, ANN, extremely rando-

mized trees (ETree), linear support vector 

classifier (SVC), logistic regression (LR), na-

ive Bayes (NB), random forest (RF), and ext-

reme gradient boosting (XGB). Specifically, 

these ML-based methods were trained using 

five sequence-based features containing 

AAC, DPC, TC, amino acid index (AAI) and 

pseudo amino acid composition (PAAC). Re-

markably, BERT4Bitter outperformed the 

comparative ML-based methods in terms of 

ACC (with an improvement of 2-29 %) and 

MCC (with improvements of 2-59 %) on the 

independent dataset. Thus, a DL-based TPP 

predictor might plausibly achieve improved 

performance over the fourteen existing TPP 

predictors. 

Third, all the existing TPP predictors were 

developed by using single ML algorithms to 

train the model. Thus, their performance is 

not robust in some cases (Charoenkwan et al., 

2021a; Kabir et al., 2022; Liang et al., 2021). 

To date, there is no ensemble-based TPP pre-

dictor in existence in this aspect. There are 

three popular ensemble learning methods 

(i.e., majority voting, average probability and 

stacking strategy). Several studies have indi-

cated that the stacking strategy outperformed 

the other two ensemble learning methods. Un-

like the remaining ensemble learning me-

thods, the stacking strategy can automatically 

explore different baseline models in order to 

develop a single stable model. For example, 

our group proposed a stacking ensemble mo-

del, namely StackIL6, for accurately identi-

fying IL-6 inducing peptides (Charoenkwan 

et al., 2021d). In StackIL6, we employed 

twelve different feature descriptors and five 

popular ML algorithms (i.e., ANN, ETree, 

LR, SVM and RF) to construct variant base-

line models for developing the final stacking 

ensemble model. Our comparative results 

showed that StackIL6 achieved the highest 

performance over its baseline models on the 

training and independent datasets. Altogether, 

the performance of TPP prediction might be 

logically increased by applying the ensemble 

learning strategy (Basith et al., 2022; Charo-

enkwan et al., 2020; Hasan et al., 2021; 

Manavalan et al., 2019a, b; Su et al., 2020b; 

Zhang and Zou, 2020). 

Finally, it is well-known that the advan-

tage of a web server is to quickly identify po-

tential TPP candidates from large-scale pro-

teins and provide the prediction without the 

need to develop an in-house prediction model 

(Dao et al., 2019; Feng et al., 2019; Lai et al., 

2019; Zhu et al., 2019). However, most of 

these predictors were not developed as web 

servers, with the exception of ThermoPred 

and SCMTPP. Although PSSM400_pKa out-

performed other TPP predictors, its utility is 

limited to experimental scientists. Overall, in 

terms of both predictive performance and 

community utility, ThermoPred and 

SCMTPP outperform PSSM400_pKa and 

other existing TPP predictors. 
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CONCLUSIONS 

In this study, we have conducted empiri-

cal comparison and analysis of fourteen exis-

ting TPP predictors in terms of multiple per-

spectives (i.e., feature encoding schemes, fea-

ture selection strategies, ML algorithms, eva-

luation strategies and web server/software 

usability). We evaluated the existing TPP pre-

dictors on the two training and three indepen-

dent datasets. Our comparative results de-

monstrated that ThermoPred outperforms 

other existing TPP predictors in terms of both 

predictive performance and community uti-

lity, while SCMTPP outperforms other exis-

ting TPP predictors in terms of high interpre-

tability and simplicity. Although, the existing 

TPP predictors provide satisfactory predic-

tion performance and promote research pro-

gress in this field, there are several issues that 

need to be addressed. Herein, four crucial as-

pects for further improving the performance 

of TPP prediction have been provided as 

follows: (i) training new models using se-

quence-to-vector encodings, (ii) using DL-ba-

sed models, (iii) using an ensemble learning 

strategy and (vi) developing a web server. We 

anticipate that this comprehensive review will 

provide useful insights for researchers in sel-

ecting appropriate TPP predictors that are 

most suitable to deal with their purposes and 

inspire follow-up research in the future. 
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