Supplementary data to:

EXPLOITING IN VITRO POTENTIAL AND CHARACTERIZATION OF SURFACE MODIFIED ZINC OXIDE NANOPARTICLES OF ISODON RUGOSUS EXTRACT: THEIR CLINICAL POTENTIAL TOWARDS HEPG2 CELL LINE AND HUMAN PATHOGENIC BACTERIA

Aisha Siddiquah¹, Syed Salman Hashmi¹, Sadaf Mushtaq¹, Sullivan Renouard², Jean Philippe Blondeau³, Rashda Abbasi⁴, Christophe Hano², Bilal Haider Abbasi^{1,2}*

- ¹ Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan
- ² Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Université d'Orléans, Chartres, France
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI) CNRS UPR3079, 1D avenue de la Recherche Scientifique, 45071 Orléans, France
- ⁴ Institute of Biomedical & Genetic Engineering (IBGE), Sector G-9/1, Islamabad, Pakistan
- * Corresponding author: Bilal Haider Abbasi, Tel & Fax: 0092-51-90644121, Mobile: 0033-767-97-0619, E-mail: bhabbasi@qau.edu.pk

http://dx.doi.org/10.17179/excli2018-1327

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

Supplementary Table 1: Protocol for SRB Assay

SRB Assay					
Cell seeding	Treatment	Cell fixation	Cell Staining	Dye Solubility	
1200 cells/well in 96 well plate (100 ul/well)	Done for 24 hours at 37°C, 200µg/ml of samples (1µl/well)	Addition of 50% TCA (25µl/well) at 4°C for 1 hours followed by washing	Addition of 0.01% SRB dye (50µl/well) for 30min at room temperature followed by washing with 1% acetic acid	Addition of 10mM Tris (pH8) to dissolve SRB dye(100 µl/well) for 5min, reading taken at 565nm	

Abbreviations: TCA: Trichloroacetic acid, Tris: tromethamine; SRB: Sulforhodamine B

Supplementary Table 2: Raw data for cytotoxicity tests. Percentage cell viability and inhibition of HepG2 cell line

Results					
Samples	% viability (mean)	% inhibition (mean)			
CE	29.47 ±1.4	70.53 ± 1.48			
C-ZnO NPs	23.92 ± 1.5	76.08 ±1.44			
WPE	30.98 ± 1.6	69.02 ± 1.47			
W-ZnO NPs	35.12±1.4	65 ± 1.45			
DMSO	88.6 ± 1.7	11.4 ± 1.5			
Doxorubicin	20.11± 1.8	80 ± 1.46			

Abbreviations: C-ZnO NPs: Callus derived zinc oxide nanoparticles; W-ZnO NPs: Whole plant derived zinc oxide nanoparticles; HepG2 Cell Line Hepatocellular carcinoma cells; CE: Callus extract; WPE: Whole plant extract; DMSO: Dimethyl sulfoxide (negative control); Doxorubicin: positive control