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ABSTRACT 

Statistical analyses are an essential part of regulatory toxicological evaluations. While projects would be ideally 

monitored by both toxicologists and statisticians, this is often not possible in practice. Hence, toxicologists should 

be trained in some common statistical approaches but also need a tool for statistical evaluations. Due to transpar-

ency needed in regulatory processes and standard tests that can be evaluated with template approaches, the freely 

available open-source statistical software R may be suitable. R is a well-established software in the statistical 

community. The principal input method is via software code, which is both benefit and weakness of the tool. It is 

increasingly used by regulating authorities globally and can be easily extended by software packages, e.g., for new 

statistical functions and features. This manuscript outlines how R can be used in regulatory toxicology, allowing 

toxicologists to perform all regulatory required data evaluations in a single software solution. Practical applications 

are shown in case studies on simulated and experimental data. The examples cover a) Dunnett testing of treatment 

groups against a common control and in relation to a biological relevance threshold, assessing the test’s assump-

tions and plotting the results; b) dose-response analysis and benchmark dose derivation for chronic kidney inflam-

mation as a function of Pyridine; and c) graphical/exploratory data analysis of previously published developmental 

neurotoxicity data for Chlorpyrifos. 
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INTRODUCTION 

Toxicological hazard assessments consider dose-response evaluation of an adverse effect 

compared to concurrent control. Often the response is also compared to historical control data, 

for quality assurance, to determine biological relevance, and to address the statistical multiple 

comparison concern (Kluxen et al., 2021). A crucial part of hazard characterization is statistical 

analysis, to identify potentially non-random effects, preferably in a holistic assessment com-

bining statistical and biological plausibility (Kluxen and Hothorn, 2020; Kluxen and Jensen, 

2021). 

The hazard characterization point estimate or point of departure (POD) used in risk assess-

ment (directly or modified by uncertainty factors), is a dose or concentration, that does not show 

a notable and relevant effect. Examples of PODs include the No Observed Adverse Effect Level 
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(NOAEL) and the benchmark dose (BMD) with a pre-defined adverse response (BMR) or pref-

erably the associated benchmark dose lower limit (BMDL). Whether an adverse effect is ob-

served depends on experimental sensitivity or statistical power (Brescia, 2020) because the 

identification of the effect dose above the NOAEL is often based on statistical testing. Con-

versely, a BMD is derived by dose-response modeling. 

When the statistical analysis in study reports or registration documents lacks transparency 

or detail its value might be unnecessarily compromised. Accordingly, the European Food Safety 

Agency (EFSA) published a guidance to increase the quality of statistical reporting (EFSA, 

2014) and thus the value of submitted data, reports, analyses and interpretations. 

The EFSA guidance outlines a reporting regime that may be incorporated into technical 

reports. But more importantly, it also states how a statistical analysis can be transparently de-

scribed. Notably, the guidance requests the use of interval estimates and graphical summaries 

on descriptive statistics and model diagnostics of the performed statistical analysis. It “(encour-

ages) a fully open and transparent approach”, a statistical interpretation of results, and repro-

ducibility of all statistical procedures.  

The use of confidence intervals describes the estimated effect sizes more transparently than 

binary statistical tests (Wasserstein et al., 2019) and their use is readily applicable in toxicology 

(Hothorn and Pirow, 2020). However, some discussion and training on their use may be needed 

in the toxicological community; generally, a more evolved understanding of statistics may be 

needed for the involved scientists and regulators and a closer cooperation with statisticians may 

be helpful (Kluxen, 2020). 

How can a transparent exchange of statistical methods between the different stakeholders 

be facilitated and documented? Further, how can toxicologists become better trained in statis-

tics and use suitable tools for assessment? The free open source statistics software R (R Core 

Team, 2020) may be a suitable tool to address both issues.  

This manuscript shortly describes R and potential benefits for toxicologists by using R, for 

example, being able to conduct all necessary analysis in toxicology within one single software 

environment. First, we give a short introduction to R with a few notes on data handling. This is 

followed by an overview of the most common statistical approaches used in toxicology and 

their availability in R. The overview is supported by code and practical examples for easy im-

plementation. 

 

VERY SHORT R-TUTORIAL 

There are many good introductions available for R, e.g. Crawley (2013) or Field et al. 

(2012). There are also books specifically focused on toxicology, e.g., Hothorn (2016) and Ritz 

et al. (2019), which, however, require some familiarity with the software. Other sources explain 

the application of Bayesian statistics (Kruschke, 2010; McElreath, 2015). Today, also video 

steaming services, such as youtube1, offer a wide range of webinars and tutorials for R in gen-

eral or for specific software extensions/packages. 

The following section aims to provide some context for using the software and introduces 

R coding to enable the reader to run the case examples.  

 

Data format 

In laboratory practice, results are often stored in MS Excel (Microsoft, Redmond, WA, 

USA)-type software. Excel is both used as a database and a preliminary assessment tool to 

generate summary statistics, e.g., mean and standard deviations, and may also be used for plot-

ting data. For statistical analysis, dedicated software is typically used; commonly point-and-

                                                 
1 https://www.youtube.com 
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click programs, such as SPSS (IBM) or Sigma Plot (alphasoft), where pre-defined statistical 

tests or assessments can be selected. Regulatory studies are often assessed according to statis-

tical decision trees, i.e., where a main test, which is often an analysis of variance (ANOVA)-

type test, is selected based on the outcome of pre-tests or assumption tests (Kluxen and Hothorn, 

2020). Naturally, there is also software that is very easy to use and conducts the pre-tests auto-

matically which is very convenient in laboratory practice, e.g., ToxRat (ToxRat Solutions 

GmbH, Alsdorf, Germany).  

For most statistical assessments and programs, data stored in Excel-type tabulating software 

has to be brought into a different format, typically from the so-called “wide” or unstacked for-

mat into the “long” or stacked format (Figure 1). For the latter, each measured response value 

is described by all variables resulting in that value, e.g., dose group, sex, time-point, etc. This 

format is not particularly handy to summarize or display data; hence, it is seldom available from 

laboratories (academic or commercial). However, the long format allows an easy and automatic 

stratification and handling of data and it is the typical structure of databases and the preferred 

data format for many statistical software programs.  

R can be used for data wrangling, statistical analyses, data exploration and presentation. 

While data formats can be changed with functions within R, data wrangling is very often a 

major part of any statistical analysis, thus, an effort to store data in a format optimal for statis-

tical software is helpful. 

 

Figure 1: Data formats: While the format in (A) allows the comparison of groups, it is not useful for 
storing data. Preferred formats should be (B) or even more tidy (C), that are directly readable for most 
statistical programs and allow filtering in spreadsheet software.  
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The statistical software R 

R (R Core Team, 2020) is a freely available open-source software based on the program-

ming languages S and Scheme (Ihaka and Gentleman, 1996). As such, the principal input is via 

a command line or a list of commands in a script, which is both the benefit and the weakness 

for the application in regulatory toxicology.  

R is very popular in the statistical community. Hence, R and its software extensions (named 

packages or libraries), which increase R's functionality, are updated frequently. All types of 

statistical calculations can be performed or developed. Thus, there is no need to switch to ded-

icated software for some analysis, e.g., SPSS for Dunnett-testing, Excel for graphing and per-

centiles, and PROAST or BMDS for BMD derivation. All actions can be performed within one 

software, R.   

Due to its popularity and its coding background, solutions for a wide variety of program-

ming issues are available. R comes with its own search engine2, blogosphere3 and R questions 

are frequently featured in stackoverflow4, a community question-and-answer website that rap-

idly (often within minutes) provides copy-paste solutions and has a searchable archive of pre-

vious problems. 

R code can be either directly typed into a command line of the R console (the interface that 

is installed on the computer) or can be prepared as template code that may be stored in a file 

allowing re-using and sharing code from previous analyses in all details. Loss of knowledge 

from previous data assessment or data wrangling strategies helpful for future assignments is 

thus mitigated. 

Upon installation, R consists of a base system, whose functionality can be enhanced accord-

ing to the needs of the individual user, i.e., by custom functions. Many additional useful func-

tions already exist and are bundled into packages, which can be downloaded from internet re-

positories, e.g., the Comprehensive R Archive Network (CRAN)5 or github6, and/or be distrib-

uted among colleagues. Packages from CRAN can be easily found and installed from within R. 

This is one main benefit of using R: everyone can program and build packages that can be made 

publicly available and peer-reviewed. Often when a new statistical method is developed the 

authors release an R-package along with the scientific publication. This makes new methods 

more approachable for others than statisticians and programming specialists. The downside is 

that the packages might be of varying quality, documentation and command syntax. Further, 

output formats may differ between packages, e.g., output from functions may be returned as 

numbers, lists or data frames with different nomenclature. This contributes to a relatively steep 

learning curve and frustration (personal experience), as compared to point-and-click software 

solutions. However, things have changed in the last few years. There are some concerted efforts 

to make data wrangling, exploration and analysis more intuitive, readable and harmonized, e.g., 

with the tidyverse7 package/approach (Wickham et al., 2019). Also, powerful graphical user 

interfaces (GUI) have been developed such as RStudio8, which gives suggestions, and auto 

completion of function names, etc., which tremendously increases R’s usability for both pro-

grammers and non-programmers.  

A major benefit of R is that a markdown language has been developed and conveniently 

integrated into RStudio. Markdown language makes it possible to easily combine text, code, 

                                                 
2 https://rseek.org 
3 https://www.r-bloggers.com 
4 https://www.stackoverflow.com/questions/tagged/r 
5 https://cran.r-project.org 
6 https://github.com 
7 https://www.tidyverse.org 
8 https://rstudio.com 

file:///C:/Users/phs730/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/6GAW1WT9/stackoverflow.com/questions/tagged/r
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analysis results and figures in one document. This makes the generation of “living documents”, 

i.e., reports in which the data is statistically assessed in-line, very easy and is consistent with 

the “reproducible research” paradigm (Gandrud, 2015). Hence, a statistics document or annex 

itself can be conveniently generated with the R software environment. 

R can be understood as an advanced calculator. Accordingly, one way to get started with R 

is to treat is as such. Below, some examples are given of how to slowly get started in R. > 

denotes input to be read by R. [1] denotes output/ results. 

 

Example R code from the R console.. 

# everything to the right of “#” is a comment, comments are not run by R 

> 1+2 

[1] 3 

> a <- 1  # assigning “<-” a value to an object “a” 

> b <- 2 

> c <- a + b  # calculating with the contents of different objects and assigning the 
results to a new object “c” 

> c # calling the object usually shows its contents  

[1] 3 

> c^b - 2 

[1] 7 

> d <- c(a, b, c)  # concatenating objects a-c and assigning this to a new object 
“d” 

> d * 2  

[1] 2 4 6 

> e <- c("a", "b", "c") # assigning a string vector to an object “e” 

> f <- data.frame("Numbers"=d, "Names"=e)  # creating a data frame out of objects 
“d” and “e”, with specified names 

> f$NumbersDouble <- f$Numbers * 2  # “$” allows to interact with specific columns or 
vectors of the data frame 

> str(f)  # investigates the type of object and shows its contents 

'data.frame': 3 obs. of  3 variables: 

 $ Numbers      : num  1 2 3 

 $ Names        : Factor w/ 3 levels "a","b","c": 1 2 3 

 $ NumbersDouble: num  2 4 6 

 

Working with objects 

A major advantage of using R is that it is an object-oriented language. Hence, the outcome 

of a calculation or an analysis can be assigned into a new object and used later, e.g., for further 

calculations or graphing. The user can conveniently work with or shift between several data 

sets or subsets in the same session. 

R includes some publicly available standard datasets, which are often used as case studies 

in the R community. The available datasets can be viewed by using the data() command. Here 

we use the dataset ToothGrowth to illustrate a few R commands. 

An Excel-like display can be achieved by using View(ToothGrowth) (note the capitaliza-

tion, R is case sensitive). It shows the variables odontoblasts length in guinea pigs “len”, the 

Vitamin C dose (0.5, 1, or 2 mg/day) “dose” delivered in two forms, orange juice (OJ) or pure 

(VC) “supp”. 
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The dataset can be plotted using base R functions, plot(ToothGrowth), or, for example, after 

loading the package tidyverse. tidyverse uses a different syntax called “piping”, ToothGrowth 

%>% plot(), but both versions result in the same outcome. A better display can be achieved by 

specifying what should be plotted, plot(len~dose, data = ToothGrowth, col = supp), i.e., len 

explained by dose with both variables to be found in the data set TootGrowth and points should 

be colored according to the type of supp. 

The beauty in R is that the objects can be re-used by other functions. As an example, we 

can combine functions to investigate how the mean of len changes by treatment and supplement 

type.  
library(tidyverse) 

ToothGrowth %>%  

 group_by(dose, supp) %>%  

 summarize(mean_len = mean(len)) %>%  

 plot(mean_len~dose, data=., col=supp) 

There are several ways how this can be achieved. However, the piping approach may be 

intuitively understood, which is important for future readers of the code. Often code, similar to 

notes in personal knowledge management, are revisited by its author later, hence, instructions 

and ideas should be formulated in a way that makes them understandable in the future (Ahrens, 

2017). Some things are easier using the piping notations; others are more convenient in base R. 

However, solutions for almost all use cases are available. 

 

Good working practice 

One highly recommended GUI for R is RStudio. Here, data assessments can be collected 

in projects. This ensures that all necessary files for an analysis are within the same working 

environment. An R-project can be created within the folder where data are located. If a project 

and the data are transferred to a new location, the dependencies remain intact. 

For repeatability of an analysis, it is convenient to source R-scripts. For example, a script 

containing code for loading the libraries needed for a specific analysis can be saved as “pack-

ages.R”, and can then be sourced in other scripts using source(‘packages.R’) (note the single 

quotation marks). 

 

Code example of packages.R 

library(readxl) #to read Excel xls/xlsx files 

library(tidyverse) #loading e.g. dplyr and ggplot2 for graphing 

library(broom) #tidying up function output 

library(multcomp) #for group-wise comparisons, e.g. Dunnett tests 

library(sandwich) #to address heterogenous variances in the multcomp package 

library(drc) # for dose-response analyses 

library(bmd) # to estimate BMDs 

 

Data entry 

Data can be entered by hand; however, usually data are imported from existing files. The 

following shows both approaches. First, a dataset is generated by sampling from a normal dis-

tribution, saved as an Excel file and imported from that same file (for illustration). This data set 

is similar to data set 1 presented in Kluxen and Jensen (2021). Afterwards, data from a 13-week 

drinking water study of Pyridine in male F344/N rats are directly typed into R. The latter dataset 

contains information on doses, incidence of chronic kidney inflammation, total number of rats 
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observed, mean (necropsy) body weight, and standard error of body weight (NTP, 2000). The 

code on data entry can be saved as “datasets.R” for easy access to data in the case examples 

below. 

 

Generating example data 

source(‘packages.R’) 

set.seed(333111) #this ensures repeatability of the generated data 

n <- 10 # a value is assigned to an object “n” 

#generating normal distributed random data 

response <- c(rnorm(n, 1, 0.5), rnorm(n, 1, 0.5), 

              rnorm(n, 2, 1), rnorm(n, 1, 0.5), 

              rnorm(n, 1, 0.5), rnorm(n, 5, 0.5))  

#generating group allocations and concentrations 

group <- c(rep(1, n),rep(2, n), rep(3, n), 

           rep(4, n),rep(5, n), rep(6, n)) 

concentration <- c(rep(0, n), rep(10, n), rep(30, n), 

                   rep(100, n), rep(300, n),rep(1000, n)) 

#collecting the generated vectors/objects in a data frame 

df1 <- data.frame(group, response, concentration, groupF = as.factor(group)) 

df1$groupF <- factor(df1$group) #new data type column to handle “group” as a factor 

write.csv(df1, "df1.csv")  

Data entry from file 

# example how to read in some Excel file: df_excel <- read_excel("example.xlsx") 

df1_readFromFile <- read.csv("df1.csv") 

Typing in data  

pyridine <- as.data.frame(cbind(Dose = c(0, 50, 100, 250, 500, 1000), 

                      Inflammation = c(0, 0, 0, 2, 4, 9), 

                      Total = c(10,10,10,10,10,10), 

                      BW = c(335, 334, 337, 334, 316, 287), 

                      BW.SE = c(9, 7, 6, 7, 5, 5))) 

 

FURTHER EXAMPLES AND CASE STUDIES 

In the following, some common examples from regulatory practice are given to show how 

R is used for statistical assessments.  

 

Dunnett testing 

The Dunnett test (Dunnett, 1955) is the most common statistical test in toxicology, as it 

compares treatment groups with a concurrent control. It can be modified to address various data 

conditions and is formulated as a contrast test, which is among others implemented in the pack-

age multcomp (Hothorn, 2007). Here, the function “general linear hypothesis test” glht() can be 

used on a simple linear model, lm(). The glht() function is powerful and also works with more 

complex models, e.g., generalized linear models (glm() function of R base), and mixed-effects 

models (lmer() of the package lme4 (Bates et al., 2015)) and it includes various other contrast 

tests, such as the Tukey, Williams or even custom contrasts.  
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Dunnett test example 

source(‘packages.R’) 

df1 %>% 

  lm(response~groupF, .) %>% 

  glht(., linfct=mcp(groupF="Dunnett"), alternative="two.sided") %>% 

  summary() 

 

Simultaneous Tests for General Linear Hypotheses 

Multiple Comparisons of Means: Dunnett Contrasts 

Fit: lm(formula = response ~ groupF, data = .) 

Linear Hypotheses: 

           Estimate Std. Error t value Pr(>|t|)     

2 - 1 == 0  -0.2099     0.2483  -0.846   0.8662     

3 - 1 == 0   0.7446     0.2483   2.999   0.0177 *   

4 - 1 == 0  -0.3331     0.2483  -1.342   0.5353     

5 - 1 == 0  -0.1578     0.2483  -0.636   0.9530     

6 - 1 == 0   3.6059     0.2483  14.523   <1e-04 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Adjusted p values reported -- single-step method) 

The outcome would suggest that the null hypothesis could be rejected for the comparisons 3-1 

and 6-1, as the p-values are not compatible with the assumption of null difference.  

In order to use confidence/compatibility intervals to estimate effect sizes, a re-assessment 

of an existing Dunnett analysis may be necessary. In R, the summary() function above, can 

simply be replaced by confint() with a specified confidence level, e.g., 90 % for two-sided com-

parisons at 5 % alpha each. This allows to assess how a specified value, representing biological 

relevance, relates to the effect size.  

 

Dunnett test confidence intervals 

df1%>% 

  lm(response~groupF, .) %>% 

  glht(., linfct=mcp(groupF="Dunnett"), alternative="two.sided") %>% 

  confint(level = 0.9) 

 

Simultaneous Confidence Intervals 

Multiple Comparisons of Means: Dunnett Contrasts 

Fit: lm(formula = response ~ groupF, data = .) 

Quantile = 2.289 

90% family-wise confidence level 

 

Linear Hypotheses: 

           Estimate lwr     upr     

2 - 1 == 0 -0.2099  -0.7783  0.3584 

3 - 1 == 0  0.7446   0.1763  1.3129 

4 - 1 == 0 -0.3331  -0.9014  0.2352 

5 - 1 == 0 -0.1578  -0.7261  0.4105 

6 - 1 == 0  3.6059   3.0375  4.1742 
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Assessing model assumptions 

Confidence intervals of the Dunnett contrasts assume that the model’s residuals follow a 

normal distribution and that the variance associated with the effect size remains constant (var-

iance homogeneity), i.e., it is not affected by treatment itself. These assumptions may or may 

not be appropriate or helpful. For some data types, e.g., count data, the assumptions may be per 

se incorrect, however, might still estimate the effect size in a way that is useful for a toxicolog-

ical assessment. This might be the case for high numbers of counts with no zero observations. 

However, usually, the variance of count data is expected to change with the mean (this is the 

inherent assumption for logistic and Poisson distributions). 

Model assumptions may be checked by statistical testing or (perhaps preferably) by visual as-

sessments.  

 

Statistical assessment of model assumptions 

# Shapiro-Wilk test for normality of residuals 

df1 %>% 

  lm(response~groupF, .) %>% 

  resid() %>% 

  shapiro.test() 

# Bartlett test for homogeneity of variance 

df1 %>% 

  bartlett.test(response~groupF, .) 

 

Graphical assessment of model assumptions 

# Quantile-quantile plot for assessing normality of residuals 

df1 %>% 

  lm(response~groupF, .) %>% 

  plot(., which=2) 

# Residual plot for assessing variance homogeneity 

df1 %>% 

  lm(response~groupF, .) %>% 

  plot(., which=1) 

Obviously, it is also possible to explore other approaches to investigate distributional as-

sumptions with R. For example, by means of a miniature simulation study and graphical as-

sessment (Figure 2). Here, the simulated data deviates in a similar fashion from the (perfect) 

normal distribution curve as the empirical residual distribution of dataset 1. Hence, one may 

consider the normal distribution assumption of the linear model’s residuals supported. 
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Figure 2: Assessing model assumptions with graphical methods of base R. Density of the residuals of 
a fitted model based on normal distributed values (black solid line). Density of values from a normal 
distribution with number and standard deviation identical to the residuals of the fitted model (red dashed 
line). Normal distribution with standard deviation identical to the residuals of the fitted model (blue dotted 
line).  
 
 

Checking for normal distribution of residuals from a linear model 

set.seed(654654) #allows exact replication of the example plot 

fit <- df1 %>% 

  lm(response~groupF, .) # linear model 

 

normalData_sampled <- rnorm(length(fit$residuals), mean = 0, sd = sd(fit$residuals)) 

x <- seq(from=-3, to=3, length.out = 100) 

 

plot(density(fit$residuals), main = "") 

lines(density(normalData_sampled), col="red", lty=2) 

curve(dnorm(x, mean = 0, sd = sd(fit$residuals), log = F), col="blue", lty=3, add = T) 

 

# the default R plotting output can be saved by a “graphics” device which is wrapped 
around the plotting function 

png("density.png", width = 10, height = 10, units = "cm", res=300) 

 INSERT plotting function(s)… 

dev.off() 

 

Plotting Dunnett confidence intervals 

multcomp objects can be plotted to visualize confidence intervals, by simply piping the 

plot() function after the confint() function above. However, the plot shows the contrasts, e.g., 

effect size change as compared to control mean. There are multiple ways to change this to the 
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original scale – which can be helpful to assess model assumptions, e.g., homogeneous variance 

(Kluxen and Jensen, 2021). 

The following shows one way to plot confidence intervals along with the original data with 

the very customizable ggplot2 package (Wickham, 2016); overplotted is a horizontal line that 

could illustrate a biologically relevant response size (Figure 3). The confidence interval can 

enhance a toxicological interpretation (Hothorn and Pirow, 2020; Kluxen, 2020). 

 

 
 

The ggplot objects that are created by the package consist of multiple layers, i.e., data and 

so-called geoms. In principle, a geom could be developed for the confidence interval function 

of glht(), which would make the following redundant. However, it shows how freely one can 

work with R objects between packages. The plot is rather busy, but it shows the possible display 

options by added geoms. 

This visualization shows that the confidence intervals have the same size, independent of 

the actual variation in the groups. The Dunnett tests pools the variation of all groups; it assumes 

homogenous variance (which is the assumption/method of the underlying linear model). While 

the variation is increased in group 3, one could argue that there is no systematic change of 

variance, i.e., increase or decrease with treatment if groups 1-6 represent increasing treatment 

levels. Hence, one might consider the homogenous variance assumption to be appropriate. If 

not, one can adjust for heterogenous variance by using a sandwich estimator in glht() by adding 

the vcov=sandwich option (of the package sandwich), which would adapt the confidence inter-

val sizes.  

 

Dunnett test confidence interval visualization 

# creating a dataframe for the effect sizes 

Dunnett <- df1 %>% 

  lm(response~groupF, .) %>% 

  glht(., linfct=mcp(groupF="Dunnett"), alternative="two.sided") %>% 

Figure 3: Simulated data plotted 
along with boxplots and Dunnett 
effect sizes. The dashed horizon-
tal line shows the mean of group 
1. The dotted red line could be a 
relevant effect size. 
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  confint(level = 0.9) %>% 

  tidy() %>% # creating a dataframe from the model output 

  # adding the control mean to get intervals on original scale 

  # groupF needs to be indexed in df1, as the confint dataframe does not contain it 

  mutate(estimate=estimate+mean(response[df1$groupF==1]), 

         conf.low=conf.low+mean(response[df1$groupF==1]), 

         conf.high=conf.high+mean(response[df1$groupF==1])) %>% 

  add_case(estimate=mean(response[df1$groupF==1]), .before = 1) %>% #adding control 

  mutate(groupF=levels(df1$groupF)) 

 

#plot data and effect sizes   

df1 %>% 

  ggplot(aes(groupF, response)) + 

  geom_boxplot(fill="grey90", width=0.1, position=position_nudge(x=-0.2))+ 

  geom_point(position = position_jitter(width=0.1), shape=1)+  

  geom_pointrange(data=Dunnett, aes(x=groupF, y=estimate, ymin=conf.low, 
ymax=conf.high),  

                  color="red", position=position_nudge(x=0.2))+ 

  geom_hline(data=Dunnett, aes(yintercept=estimate[groupF==1]), color="red",  

             linetype="dashed")+ 

  geom_hline(yintercept=3, color="red", linetype="dotted")+ 

  labs(x="Group", y="Response")+ 

  theme_bw() 

 

#ggplot2 output can be saved by a specific function. Either the plot is saved into a 
specific object and referenced or the last ggplot called from memory with the 
last_plot() function.  

ggsave("ggplot-output.png", width=10, height=10, units="cm", plot = last_plot()) 

The assumptions of the linear model can be explored graphically (Kluxen and Hothorn 

2020), for example by simply using the plot() function on the model, however, other approaches 

are possible (see above).  

 

Dose-response analysis 

Fitting a dose-response model to data, e.g., chronic kidney inflammation as a function of 

Pyridine, can be done using the package drc (Ritz et al., 2019). As for the lm() function, drm() 

requires a specification of the response to be explained by the dose, and further arguments 

telling R that these are binomial data and what type of dose-response model should be used. 

The build-in simple plot functionality shows the fitted model (Figure 4). 
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Dose-response analysis binomial data example 

source(‘packages.R’) 

pyridine %>% 

drm(Inflammation/Total ~ Dose, data =. , weights = Total, type = "binomial", fct = 
W2.2()) %>% 

plot(., xlim = c(0,2000), ylim = c(0,1),  

ylab = "Propotion with chronic kidney inflammation",  

xlab = "Pyridine (ppm)")  

#the “.” Pipes the output of the previous function to the current function, it is 
needed for some functions that do not utilize piping by default 

 

Using body weight as response variable, similar code provides a fitted dose-response model, 

and with a few more lines of code, a ggplot figure is obtained (Figure 5). 

Figure 4: Default plot of the drc package 
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Figure 5: ggplot of a drc object 
 

 

Dose-response analysis continuous summary data example 

model.BW <- drm(BW ~ Dose, data= pyridine , weights = BW.SE, fct = W2.4())  

newdata <- expand.grid(Dose = exp(seq(log(1), log(2000), length=100))) 

pm <- predict(model.BW, newdata = newdata, interval="confidence") 

 

newdata$p <- pm[,1] 

newdata$pmin <- pm[,2] 

newdata$pmax <- pm[,3] 

 

pyridine$Dose0 <- pyridine$Dose 

pyridine$Dose0[pyridine$Dose0==0] <- 1 

 

ggplot(pyridine, aes(x=Dose0, y=BW))+ 

  geom_point()+ 

  geom_errorbar(aes(ymin=BW - BW.SE, ymax=BW + BW.SE), width=0)+ 

  geom_line(data=newdata, aes(x=Dose, y=p))+ 

  coord_trans(x="log") +  

  ylab("Body weight (g)")+ 

  xlab("Pyridine (ppm)")+ 

  theme_bw()+ 

  scale_x_continuous(breaks=c(1,10,100,1000),label=c(0,10,100,1000)) 
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One disadvantage of drc, which may however also be seen as a strength, is that the user 

must decide on both the type of dose-response model to go with and the number of parameters. 

For the binomial data example, i.e., chronic kidney inflammation, a 2-parameter Weibull model 

was chosen as both lower and upper limits were assumed known to be 0 and 1, respectively. 

For the continuous data, no previous knowledge on any of the parameters were assumed and a 

4-parameter Weibull model was therefore selected. When previous knowledge on the dose-

response shape is known, this can be utilized in the model fitting by “fixing” one or more pa-

rameters, e.g., the 2-parameter Weibull model is a pre-coded version of the 4-parameter model 

where lower and upper limit is fixed. The result is a model where the remaining parameters are 

fitted with more precision, i.e., lower standard errors. 

 

Benchmark dose evaluation 

Given a dose-response model fitted using drc, the package bmd can be used for estimating 

BMD and BMDL (Jensen et al., 2020). For the binomial data example above, an obvious choice 

could be to estimate BMD using the “excess risk” definition and a pre-defined BMR=0.1, while 

the “relative” definition of BMD corresponding to estimating the critical effect size could be 

the choice for the continuous data (Slob, 2017). The BMDL based on bootstrapping, using the 

bmdBoot() function, involves random sampling. For reproducibility, it is important to “set a 

seed”.  

 

BMD analysis for binomial data 

set.seed(1001) 

pyridine %>% 

  drm(Inflammation/Total ~ Dose, data=. , weights = Total,  

      type="binomial", fct=W2.2()) %>% 

  bmdBoot( . , 0.1, backgType="modelBased", def="excess")  BMD     BMDL 

 215.4948 144.5428 

 

BMD analysis for continuous data 

set.seed(1001) 

pyridine %>% 

  drm(BW ~ Dose, data = . , weights = BW.SE, fct = W2.4()) %>% 

  bmdBoot( . , 0.1, backgType="modelBased", def="relative") 

 

      BMD     BMDL 

 691.3295 497.8342 

Real case example with Chlorpyrifos 

A real case example might be helpful to demonstrate how R can be used to re-assess data 

for toxicological insight. 

Mie et al. (2018) previously reviewed a regulatory developmental neurotoxicity (DNT) 

study conducted with the insecticide Chlorpyrifos. It was suggested that changes in cerebellum 

height and cerebellum height relative to brain weight would indicate a DNT effect for 

Chlorpyrifos. While there appeared no effects in the high-dose group for cerebellum height 

relative to brain weight, the effects in the low- and mid-dose groups were pronounced and 

statistically significant. Juberg et al. (2019) previously refuted the assessment of Mie et al. 

(2018). Unfortunately, the data set cannot be shared with the readers, as it is propriatary 
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information not owned by the authors’ institutions. However, the approach itself is generic and 

suitable for similar cases. 

Figure 6 is reproduced from Mie et al. (2018) and now also includes individual values. 

Notable are extreme values and differences in variation for cerebellum height between 

treatment groups for males, driven by two animals. Superimposed are mean values and the 

standard deviation by adding a custom layer to the normal scatter plot from ggplot2. This 

approach allows the addition of summary statistics relevant to the assessment, others could be 

percentiles. 

 

 
Figure 6: Data from Mie et al. (2018), showing cerebellum height and cerebellum height to brain weight 
over dose of Chlorpyrifos, with individual values (open circles) added along with mean values (multipli-
cation sign) and standard deviation (line range), which can be added by applying a custom function. 
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Adding a custom function to a ggplot2 

  stat_summary(geom = "pointrange", 

               fun = "mean", 

               fun.min = function(x) mean(x) - sd(x), 

               fun.max = function(x) mean(x) + sd(x), 

               color="black", shape=4) 

 

For Figure 6A, Mie et al. (2018) reported that the 1 mg/kg bw/day dose was statistically 

significantly different to control for females and the 5 mg/kg bw/day different to control for 

males, according to a Dunnett test.  

For Figure 6B, the 0.3 and 1 mg/kg bw/day doses were different to control for both sexes, 

while the top dose was not.  

The previous statistical analysis is not replicated here for the following reasons.  

1) For cerebellum height, the homoscedasticity assumption might be scrutinized, at least for 

males.  

2) Cerebellum height to brain weight is a ratio, which can be easily biased by effects on 

either factor and when they correlate the assessment of their ratio may become meaningless 

(Curran-Everett, 2013). In fact, the curious u-shaped dose-response and the lack of effect for 

the high-dose group for both sexes strongly suggest the presence of a confounding effect.  

3) There is an issue with generic statistical testing as a single decision criterion (Wasserstein 

and Lazar, 2016), especially when using small group sizes where individual response values 

have much influence on the assessment.  

4) In practice, it makes sense to compare responses not only to the concurrent control mean 

but also to relevance thresholds, for example based on historical control data, on the one hand 

to identify biological relevance of effects and on the other to address the multiple comparison 

problem. Unfortunately, historical control data for cerebellum height are scarce.  

5) There is the limitation that the litters of the F1 generation pups cannot be reproduced 

from the data available to the authors. There might be a genetic predisposition with regard to 

brain morphology, which is not captured or accounted for in a classical Dunnett-type statistical 

analysis. Hence, it is unclear whether the extreme responses are observed in pups that come 

from the same litter and whether the variation is appropriately modeled by a simple linear 

model. For example, the animal numbers of the minimum and maximum response for 

cerebellum height in the high-dose male group are 104 and 108, respectively. Considering 

subsequent numbering and a mean litter size of 13 pups/litter in that treatment group, the pups 

are likely to come from the same litter. A mixed-model that consideres both within and between 

litter variation would then presumably not find a significant effect for that treatment group for 

cerebellum height. Also, if the historical background variation is not considered, it is unclear 

whether such a variation is in itself a toxicologically relevant effect or common/normal. 

Due to this uncertainty, a more abstract and holistic approach may be applied. This may 

have benefits if statistical model assumptions are violated (Kluxen and Jensen, 2021). Ratios 

and confounding can be investigated by simple scatterplotting, as proposed for investigating 

relative organ weights (Kluxen, 2019) but can also be applied on other measures (Bomann et 

al., 2021). This approach has the obvious limitation that no associated uncertainty is estimated 

for the assessment. 
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Scatterplotting to investigate rates, confounders or relative organ weights 

chlorpyrifos %>% 

  ggplot(aes(x=body_weight, y= organ_weight, color=Dose, shape=Dose)) + 

  geom_point()+ 

  facet_grid(~Sex) 

 

Figure 7A shows a scatterplot of cerebellum height to brain weight. The individual values 

indicate a direct correlation: animals with a high brain weight also have a higher cerebellum 

height. The plot shows that the two male high-dose animals that have the lowest cerebellum 

heights also have the lowest brain weights. 

Figure 7B shows a scatterplot of cerebellum height to body weight and (C) brain weight to 

body weight. The animals with the lowest cerebellum height and brain weight also have the 

lowest body weight. A simple linear model for the correlation of body and brain weight, 

ignoring sex and dose, explains 84 % of the variance. The model can be superimposed in the 

plot by adding: geom_smooth(method="lm", aes(group=1)). This model does not seem to explain 

more of the available variation when additionally considering dose as a cofactor.  

 
Figure 7: (A) Cerebellum height to brain weight, (B) cerebellum height to body weight, and (C) brain 
weight to body weight scatter plot, overplotted with linear models. The dose levels are depicted as sym-
bols. 
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Simple comparison of linear models 

fit_1 <- chlorpyrifos %>%  

  lm(Brain_wt~Body_wt, .) 

fit_2 <- chlorpyrifos %>%  

  lm(Brain_wt~Body_wt+as.numeric(Dose), .)  

anova(fit_1, fit_2) 

 

Analysis of Variance Table 

 

Model 1: Brain_wt ~ Body_wt 

Model 2: Brain_wt ~ Body_wt + as.numeric(Dose) 

  Res.Df    RSS Df Sum of Sq      F Pr(>F) 

1     46 0.1286                            

2     45 0.1264  1 0.0022034 0.7845 0.3805 

 

Hence, since cerebellum height, brain weight and body weight correlate, an effect on body 

weight is propagated through the endpoints. This effect is exacerbated when endpoints are 

assessed in ratios and results in curious dose-response relationships, as seen for cerebellum 

height to brain weight ratio.  

Here, animals with notably lower cerebellum heights are clearly smaller than other animals. 

This observation casts doubt on a targeted effect on brain morphology but supports an effect 

following general maternal toxicity. The relationship of body weight and organ weight is 

complex (Bailey et al., 2004; Kluxen, 2019) and driven, for example, by the need for a certain 

organ size to ensure physiological function. This may be even more relevant for the brain and 

associated endpoints.  

 

DISCUSSION 

We hope that we convinced the reader that R gives its user the technical means to conduct 

all common statistical assessments within the same tool. Especially BMD modeling is usually 

conducted in dedicated software. This flexibility is convenient and contributes to transparency, 

as all assessments can be communicated by the same canonical software code. The graphical 

extension ggplot2 allows high quality 2d plots of most cases relevant in toxicology. 

There are additional software extensions available that may be suitable for toxicological 

analysis. For example, for toxicokinetic-toxicodynamic (TKTD), pharmacokinetic and phar-

macodynamic (PB/PD) modeling or survival analysis.  

Regulatory authorities have a documented use of R, for example for deriving default values 

for dermal absorption (EFSA, 2017), as exposure models (EFSA, 2022), or as the basis for 

BMD modeling9,10. Hence, one can imagine that there is in-house competence to use R-scripts. 

An R package was recently successfully submitted to the United States Food and Drug Admin-

istration (US FDA) as an electronic Common Technical Document (eCTD)11, demonstrating 

transparency and reproducibility of analyses. This also demonstrates that there is a certain need 

for toxicologists to built-up some basic competences in R in order to keep up with such devel-

opments. 

                                                 
9 https://github.com/NIEHS/ToxicR 
10 https://www.rivm.nl/en/proast 
11 r-consortium.org/blog/2021/12/08/successful-r-based-test-package-submitted-to-fda 
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When older studies are used in novel registration procedures, and new methods for statisti-

cal assessment are available or recommended, e.g., effect size estimation as compared to statis-

tical hypothesis testing, documented R code can be easily adjusted for new requirements or 

methods by all stakeholders in registration processes.  

The code-type input in R may have a steep learning curve and inconsistencies between 

function grammars can be confusing. The user also encounters normal programming issues, for 

example, that a missing comma or parentheses disrupt a complete analysis. However, the tool 

allows a toxicologist to perform and replicate virtually all possible statistical assessments. It 

may further serve as a common language between statisticians and toxicologists. By this, R 

may aid in the statistical education of toxicologists. Having to write code for an analysis may 

also urge the toxicologist to explore different routes, e.g., graphical inspection of residuals of a 

fitted model to assess normal distribution instead of conducting generic testing (Kluxen and 

Hothorn, 2020).   

 

CONCLUSION 

R is a powerful and free open-source tool that may be very valuable for toxicologists by 

allowing all regulatory required data evaluations in one software. Toxicologists are empowered 

to perform their own statistical evaluations and communicate those with statisticians and au-

thorities.  
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