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ABSTRACT 

The emergence of New Delhi metallo-beta-lactamase-1 (NDM-1) has conferred enteric bacteria resistance to 

almost all beta-lactam antibiotics. Its capability of horizontal transfer through plasmids, amongst humans, animal 

reservoirs and the environment, has added up to the totality of antimicrobial resistance control, animal husbandry 

and food safety. Thus far, there have been no effective drugs for neutralizing NDM-1. This study explores the 

structure-activity relationship of NDM-1 inhibitors. IC50 values of NDM-1 inhibitors were compiled from both the 

ChEMBL database and literature. After curation, a final set of 686 inhibitors were used for machine learning model 

building using the random forest algorithm against 12 sets of molecular fingerprints. Benchmark results indicated 

that the KlekotaRothCount fingerprint provided the best overall performance with an accuracy of 0.978 and 0.778 

for the training and testing set, respectively. Model interpretation revealed that nitrogen-containing features 

(KRFPC 4080, KRFPC 3882, KRFPC 677, KRFPC 3608, KRFPC 3750, KRFPC 4287 and KRFPC 3943), sulfur-

containing substructures (KRFPC 2855 and KRFPC 4843), aromatic features (KRFPC 1566, KRFPC 1564, 

KRFPC 1642, KRFPC 3608, KRFPC 4287 and KRFPC 3943), carbonyl features (KRFPC 1193 and KRFPC 

3025), aliphatic features (KRFPC 2975, KRFPC 297, KRFPC 3224 and KRFPC 669) are features contributing to 

NDM-1 inhibitory activity. It is anticipated that findings from this study would help facilitate the drug discovery 

of NDM-1 inhibitors by providing guidelines for further lead optimization. 
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INTRODUCTION 

Antibiotic resistance is defined as bacteria 

having resistance to the effects of antibiotic 

agents. It has already been listed in the top 10 

global public health burdens by the WHO. 

Every year in the US, there are more than 2.8 

million cases of infection by antibiotic-re-

sistant bacteria, and mortality is more than 

35000. From amongst all antibiotics, almost 

70% of pathogenic bacteria have developed 

resistance to at least 1 antibiotic (Bush and 

Bradford, 2016). 

Beta-lactamases are enzymes secreted by 

bacteria to hydrolyze the most widely used 

antibiotics: beta-lactam antibiotics, rendering 

them useless and posing a major threat to an-

tibiotic resistance control. There are two cat-

egories of beta-lactamases: serine-active-site 

and zinc-ion-active-site beta-lactamases, ac-

cording to the Ambler classification system. 

Beta-lactamases with serine active sites be-

long to classes A, C and D and those with 

zinc-ion active sites belong to class B (Bahr 

et al., 2021). Because the active sites of class 

B beta-lactamases are coordinated by metal 

ions, they are also called metallo-beta-lac-

tamases (MBL). Amongst MBLs, New Delhi 

Metallo-β-lactamase-1 (NDM-1) was first 

discovered in K. pneumoniae and E. coli of a 

Swedish traveller back home from India in the 

year 2008. K. pneumoniae and E. coli harbor-

ing NDM-1 have spread widely in the Indian 

subcontinent, China, Southeast Asian coun-

tries, and the Middle East. Until now there are 

a total of 41 genetic variants of NDM-1, rang-

ing from NDM-1 to NDM-41. In comparison 

with other significant metallo-beta-lac-

tamases such as Imipenemase (IMP-1) and 

Verona integron-encoded (VIM-2), NDM-1 

is mainly harbored by Enterobacteriaceae 

species (especially K. pneumoniae and E. 

coli), while IMP-1, VIM-2 are harbored by P. 

aeruginosa (Naas et al., 2017; Eiamphung-

porn et al., 2018). Anchored to the outer 

membrane of gram-negative bacteria as a lip-

oprotein, NDM-1 possesses higher tolerance 

of zinc ion depletion than other MBL mem-

bers as water-soluble periplasmic enzymes. In 

addition, NDM-1 has highly efficient hydro-

lytic capabilities against a wide spectrum of 

beta-lactams, including carbapenems (Gonzá-

lez et al., 2016).  

Clinical bacterial strains expressing 

NDM-1 are currently susceptible only to cer-

tain antibiotics of last resort: colistin, tigecy-

cline, and fosfomycin (Tooke et al., 2019). 

All those antibiotics of last resort demonstrate 

significant side effects, which limit their 

large-scale application. In addition, NDM-1 

and its genetic variants can be transmitted by 

plasmids, which can be facilitated by acceler-

ated globalization and international travellers. 

Last but not least, plasmids harboring NDM-

1 genes are reported to be identified amongst 

food animals and the environment (Wang et 

al., 2012; Szmolka and Nagy, 2013; Islam et 

al., 2017; Parvez and Khan, 2018). The isola-

tion of blaNDM-1 genes in food animals indi-

cates the zoonotic transmission capability and 

implicates significant food safety issues. 

While the environmental spread of blaNDM-

1, especially through water, poses more pres-

sure on the environmental containment of an-

timicrobial resistance. All the above aspects 

of NDM-1 make infection control rather time 

and resource-consuming. 

Until now, although there is noticeable 

progress on drug discovery for NDM-1 inhib-

iting molecules, there are no effective inhibi-

tors against NDM-1 that can be applied in 

clinical practice. Some conventional beta-lac-

tamase inhibitors, such as clavulanic acid, 

sulbactam, and tazobactam cannot inhibit 

NDM-1. There are a number of inhibitors in 

vitro, for example, L-captopril, Aspergillo-

marasmine A, cyclic boronates, etc (Li et al., 

2014; Hecker et al., 2020, Tehrani et al., 

2020b). Drug discovery for NDM-1 inhibitors 

faces a series of difficulties, due to the unique 

structural characteristics of NDM-1, includ-

ing flexibility of the binding pocket, adapta-

bility of the active site loop, the open shallow 

cavity of the active site, water reorganization 

upon ligand binding, relative lacking of 

knowledge of whole catalysis process and po-

tential off-target effects to physiological 

metalloenzymes, etc. All the above make the 
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drug discovery of NDM-1 inhibitors highly 

challenging and uncertain (Behzadi et al., 

2020). 

Quantitative structure-activity relation-

ship (QSAR) is a ligand-based drug discovery 

approach that harnesses mathematical models 

for correlating physicochemical property in-

formation of molecules with their biological 

activities. The essence of QSAR is based on 

two principles: (i) structure dictates activity 

and (ii) molecules with similar structures 

demonstrate similar bioactivities (Tropsha, 

2010). As a methodology in chemistry and 

drug discovery, QSAR/QSPR has gone 

through a remarkable transformation since its 

dawn 60 years ago. As early as the time of 

Corwin Hansch, QSAR/QSPR modeling pro-

cesses were performed on a small number of 

molecules with few molecular descriptors 

employing multilinear regression. For now, 

thanks to the development of information 

technology and artificial intelligence, 

QSAR/QSPR has evolved to the application 

of a large dataset, equipped with sophisticated 

molecular descriptors, advanced machine 

learning algorithms, and various validation 

techniques. QSAR/QSPR modeling tech-

niques are now widely used in chemistry, 

drug discovery, material science, and envi-

ronmental protection. And they are not for bi-

oactivities only, but also chemical properties 

prediction, for example, melting point, bio-

degradation rate, ecotoxicity, blood-brain-

barrier penetration, etc (Nantasenamat and 

Prachayasittikul, 2015; Nantasenamat et al., 

2015; Nantasenamat, 2020). Previously, there 

are some studies on the structure-activity re-

lationship of specific series of NDM-1 inhib-

itors, for example, Aspergillomarasmine A 

derivatives, rhodanines and derived enethiol 

inhibitors, azetidinimines, dipicolinic acid de-

rivatives (Chen et al., 2017; Zhang et al., 

2017, 2018; Romero et al., 2021). However, 

until now, there is no structure-activity rela-

tionship study on the comprehensive library 

of NDM-1 inhibitors.  

The OECD has established principles for 

QSAR modeling consisting of five rules: de-

fined endpoint, unambiguous algorithms, de-

fined applicability domain, model validation, 

and mechanistic interpretation. The rules in-

volve various steps of QSAR modeling: data 

compilation, data splitting, machine learning 

process, evaluation of the robustness and pre-

dictability of the model, and mechanistic in-

terpretation of feature importance (Fjodorova 

et al., 2008; Tropsha, 2010; Piir et al., 2018). 

In this study, a QSAR classification model 

was built according to the OECD criteria us-

ing the random forest algorithm for investi-

gating the quantitative structure-activity rela-

tionship for NDM-1 inhibitors. After hy-

perparameter optimization, the model was in-

terpreted by selecting important features for 

exploring their contributions and mechanisms 

in NDM-1 inhibiting activities. 

 

MATERIALS AND METHODS 

This is a computational study utilizing 

QSAR modeling for investigating the quanti-

tative structure-activity relationship for 

NDM-1 inhibitors. QSAR modeling aims to 

establish a relationship between the intrinsic 

information of molecules and their endpoint 

bioactivity values/classes. The design of this 

study is summarized in schematic diagram in 

Figure 1. 
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Figure 1: Schematic diagram of the conceptual framework of this study. Different colors symbolize 
various steps of the study. Green means data collection and data cleansing, blue means descriptor 
calculation, red means QSAR modeling and orange means validation and mechanistic interpretation. 

 

 

Data compilation 

All biological activity data sets are iso-

lated from the ChEMBL database and a com-

pilation of primary literature. The complete 

list of origins of data sets are shown in Sup-

plementary Table 1. IC50 values are selected 

exclusively in this study for further investiga-

tion. As a result, 703 NDM-1 inhibitor activi-

ties have been obtained. After data cleansing 

which involves removal of redundant data, re-

moval of unqualified data, imputation of 

missing or unqualified data, there are 686 

non-redundant molecules left with available 

IC50 values as the final data sets for modeling. 

And above all, for the sake of more straight-

forward visibility of the bioactivities and in-

terpretability of the values, needs to transform 

IC50 to pIC50 values. pIC50 is the negative log-

arithmic value of IC50, and the transformation 

of value can make the data logarithmic, 

demonstrating the distribution, diversity, and 

tendency more visible. Particularly, IC50 ≤ 

1μM (pIC50 ≤ 6) were considered as active, 

while IC50 > 10 μM (pIC50 < 5) inactive. 

Those IC50 between them are considered in-

termediate. Shown in Table 1 is the summary 

of counts of all bioactivity classes. 
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Table 1: Summary of counts of NDM-1 inhibitors 
along with bioactivity information. After data bal-
ancing, all three classes have the same size of 
263. 

Class pIC50 values Count 

Inactive  <5.0 263 

Intermediate  5.0-6.0 218 

Active  ≥6.0 205 

 

 

Molecular fingerprint descriptor  

calculation 

Molecular fingerprints are the representa-

tions of a complex form of molecular de-

scriptors. In this study, the PaDEL package 

was used for calculating 12 sets of molecular 

fingerprints (Yap, 2011). Details are shown in 

Table 2.  

Klekota-Roth fingerprints is a set of 4860 

molecular substructures proposed by Justin 

Klekota and Fredrick Roth. These substruc-

tures originated from chemical libraries and 

are explored for their privileges in bioactivi-

ties. PubChem fingerprints encode molecular 

fragments information with 881 binary digits 

and can be accessed from PubChem. Sub-

structure fingerprint set consists of 307 chem-

ical functional groups by SMARTS patterns. 

The molecular fingerprint means the presence 

or absence of any particular fingerprint, and 

the word count means the number of these 

particular fingerprints (Yap, 2011). Consider-

ing the interpretability for biologists, only 

KlekotaRoth, KlekotaRothCount, PubChem, 

Substructure and SubstructureCount finger-

print sets are used for further modeling. 

As each set of fingerprints contains tens 

even hundreds of structural datasets, they can 

add up to total complexity and give the risk of 

bias in the model. Therefore, feature selection 

is necessitated by removing low variance fea-

tures. By default, all zero variance features 

should be removed, as zero-variance features 

have constant value and all instances share the 

same constant on this feature. The threshold 

of variance is set to 0.1, which means that fea-

tures with variance lower than 0.1 are to be 

removed, without affecting the overall perfor-

mance of the model, as well as reducing the 

time and computational resources (Nanta-

senamat, 2020).  

 

 
Table 2: All 12 sets of molecular fingerprints in PaDEL software 

Fingerprint Amount  Description 

2D AtomsPair 780 Presence of atom pairs at various topological distances 

2D AtomsPair-

Count 

780 Count of atom pairs at various topological distances 

Estate  79 Electrotopological state 

CDK Extended 1024 Extends fingerprint with additional bits describing ring  

features 

CDK 194 Fingerprint of length 1024 and search depth of 8 

CDK Graph-only  1024 Connectivity only 

KlekotaRoth 4860 Presence of certain chemical substructures that enrich for 

biological activities 

KlekotaRoth count 4860 Count of certain chemical substructures that enrich for  

biological activities 

MACCS 166 Binary representation of chemical features defined by 

MACCS keys 

PubChem 881 Binary representation of substructures defined by PubChem 

Substructure 307 Presence of SMARTS patterns for functional groups 

Substructure 

count 

307 Count of SMARTS patterns for functional groups 

https://sciwheel.com/work/citation?ids=3262023&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3262023&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9274314&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9274314&pre=&suf=&sa=0
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Data balancing and data splitting 

Data balancing is a critical step in classi-

fication modeling. Data imbalance occurs 

when the classes of the dataset are distributed 

unequally. For classification models, data im-

balance is too common to be avoided. Gener-

ally, the influence of a mild degree of data im-

balance can be ignored, while the influence of 

significant data imbalance can lead to the un-

reliability of accuracy. To handle data imbal-

ance, in this study, random oversampling 

technique is used. Random oversampling by 

essence is the random duplication of the mi-

nority class amongst datasets. Shown in Fig-

ure 2 is the comparison between imbalanced 

data and balanced data. Data splitting is a val-

idation procedure based on the division of the 

input data set into a training set and a test set 

(Nantasenamat et al., 2015). In this study, the 

training set and the testing set will be in the 

ratio of 80:20. Afterwards, 10-fold cross-val-

idation was performed, as the internal valida-

tion procedure, so as to make the most use of 

the data for ensuring the robustness and relia-

bility of the model. 

 

QSAR modeling and hyperparameter  

tuning 

As a multivariate analysis utilizing ma-

chine learning automatic modeling to corre-

late the independent variables (molecular fin-

gerprint information) with dependent varia-

bles (bioactivities), in this study, the QSAR 

modeling is done by employing a random for-

est algorithm, through the Jupyter notebook, 

based on Python scripts. In order to ensure the 

reproducibility of the model, all the random 

states during the programming are set to 42 by 

default.  

Hyperparameters of the random forest al-

gorithm can be tuned in order to optimize the 

model performance. Unlike parameters of a 

model that can be learned during the training 

process, hyperparameters are set up before the 

training begins. In this study, two significant 

hyperparameters from the random forest algo-

rithm, i.e., the number of decision trees in the 

forest (n_estimators) and the number of fea-

tures considered by each tree when splitting a 

node (max_features) are selected for tuning. 

The reason as to why they are selected are de-

scribed as follows. The greater the number of 

decision trees in the random forest, the better 

performances they can bring about. However, 

the increasing number of decision trees can 

consume more computational resources and 

slow down the modeling process, without op-

timizing the model performance significantly. 

Meanwhile, the number of maximal features 

by each tree when splitting can impact the 

model performance to various degrees de-

pending on the size and characters of the da-

taset. In the next step, GridSearchCV from the 

scikit-learn Python library is used to evaluate 

the model performance in a grid-wise manner 

by exhaustively combining all hyperparame-

ters in the selected range. In this study, the 

n_estimators hyperparameter is set to 0-700, 

using 20 as step size. As for the max_features 

hyperparameter, the employed value range is 

set to 1-5. The combination of hyperparame-

ters that provide the best performance is se-

lected for modeling.  

 

 

 

Figure 2: Schematic comparison of original and balanced dataset 

https://sciwheel.com/work/citation?ids=2389272&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2389272&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2389272&pre=&suf=&sa=0
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Model validation 

In order to evaluate the robustness and 

generalization of the model, validation is per-

formed as an indispensable step of modeling. 

The measure of validation consists of internal 

validation and external validation. The inter-

nal validation is the validation within the 

training set, mostly by cross validation. 

Meanwhile, the external validation is the val-

idation of the holistic model (Shoombuatong 

et al., 2018).  

For classification models, there are a se-

ries of parameters to validate the model. In 

this study, accuracy (ac), recall (re), f1 score 

(f1) and MCC (Matthew’s correlation coeffi-

cient) are used for validation. For each set of 

descriptor/fingerprint, the model will be vali-

dated for their performances both in the train-

ing set and testing set. The outstanding model 

will be extracted and further validated 

through cross validation. 

 

● 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

● Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

 

● Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

 

● f1 = 
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

● 𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  

 

 

Mechanistic interpretation of feature  

importance  

Feature importance refers to assigning a 

score to the input variables based on how im-

portant they are at contributing to the target 

variable. Random forest algorithm has built-

in feature importance of Gini importance (or 

mean decrease impurity), which is computed 

from the random forest structure. As random 

forest algorithm consists of a multitude of de-

cision trees, and each tree can be seen as a set 

of internal nodes and leaves, the internal 

nodes determine how to make decisions by di-

viding datasets into 2 separate subsets. Fea-

tures for the internal nodes are selected by 

Gini impurity or information gain in classifi-

cation model, or variance reduction in regres-

sion model. The random forest built-in feature 

importance is computed during the process of 

modeling, so that it can save lots of time and 

computing resources.  

 

Reproducible research 

Reproducibility is defined as the ‘close-

ness of the agreement between the results of 

measurements of the same measure and car-

ried out under changed conditions of meas-

urement’. Reproducibility of the experiment, 

whether in vitro or in silico, is a major con-

cern in science and technology as it is closely 

related to extensibility of knowledge and re-

producibility of outputs (Schaduangrat et al., 

2020). As this is a computational study, to 

maintain reproducibility of the model, all the 

data sets, source codes are uploaded to 

GitHub repository, and all random seeds are 

set at 42. All the above information can be ac-

cessed at https://github.com/georgey-

uricadd/ic50-dataset. 

 

RESULTS AND DISCUSSIONS 

The emergence of NDM-1 has conferred 

pathogenic bacteria almost full spectrum re-

sistance to beta-lactam antibiotics. However, 

until now there are no available NDM-1 in-

hibiting drugs that are applied in practice. Due 

to the gravity of the global antimicrobial re-

sistance burden, there is an urgent need to de-

velop new drugs to inhibit NDM-1. This study 

is a QSAR study built according to the OECD 

criteria using the random forest algorithm for 

investigating the quantitative structure-activ-

ity relationship for NDM-1 inhibitors. After 

using 12 sets of molecular fingerprints from 

the PaDEL package for classification model, 

the KlekotaRothCount fingerprint set stands 

out with the best model performance. After 

modeling, hyperparameter tuning and feature 

importance ranking, top 20 ranked finger-

prints, including nitrogen-containing features 

(KRFPC 4080, KRFPC 3882, KRFPC677, 

https://sciwheel.com/work/citation?ids=5973715&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5973715&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5973715&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5973715&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8204046&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8204046&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8204046&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8204046&pre=&suf=&sa=0
https://github.com/georgeyuricadd/ic50-dataset
https://github.com/georgeyuricadd/ic50-dataset
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KRFPC3608, KRFPC 3750, KRFPC4287 

and KRFPC3943), sulfur-containing sub-

structures (KRFPC 2855 and KRFPC 4843), 

aromatic features (KRFPC 1566, KRFPC 

1564, KRFPC 1642, KRFPC 3608, KRFPC 

4287 and KRFPC 3943), carbonyl features 

(KRFPC 1193 and KRFPC 3025), aliphatic 

features (KRFPC 2975, KRFPC 297, KRFPC 

3224 and KRFPC 669) are used for mechanis-

tic interpretation of feature importance. 

As a reproducible QSAR model to explore 

the structure-activity relationship of NDM-1 

inhibitors, this study utilizes a comprehensive 

dataset source, interpretable learning algo-

rithm and measurable evaluation metrics for 

building the model. In addition, after mecha-

nistic interpretation of feature importance, the 

discoveries from the important features 

largely provide suggestions and directions for 

further NDM-1 drug discovery. From a larger 

point of view, the results and discoveries of 

the study facilitate combat against antimicro-

bial resistance. 

 

Exploratory data analysis and visualization  

An exploratory data analysis is done to 

visualize the distribution, diversity, and pat-

terns of the NDM-1 inhibitors. Amongst the 

686 inhibitors, there are 263 inactive mole-

cules, 205 active molecules, and 218 interme-

diate molecules. The molecules are evaluated 

and compared with Lipinski descriptors as 

shown in Figure 3. 

Lipinski’s rule-of-five is a statistical prin-

ciple to evaluate the drug-likeness properties 

of orally available drugs by Christopher 

Lipinski (Lipinski et al., 2001). It consists of 

molecular weight no more than 500 kDa; oc-

tanol-water partition coefficient no more than 

five; hydrogen bond acceptors no more than 

ten; hydrogen bond donors no more than five. 

As a statistical principle, the set of rules is not 

an absolute principle to define or exclude a 

molecule as a drug. A molecule that meets all 

criteria of Lipinski’s rule doesn’t make it a 

drug, and vice versa, a molecule that violates 

1 or 2 rules of Lipinski's rule doesn’t exclude 

its possibility to be a drug. For example, some 

prominent drugs such as atorvastatin and 

montelukast, both violate more than one of 

the Lipinski rules (Bickerton et al., 2012). Ac-

cording to medicinal chemistry, all drugs play 

pharmaceutical effects via 3 aspects: molecu-

lar shape and size; electronic effects, and sol-

ubility profiles. Hereby, molecular weight 

largely determines the molecular size and 

shape; nHA and nHD are the electronic ef-

fects, and LogP corresponds to solubility pro-

files. In exploratory data analysis, Lipinski’s 

rule of five properties is evaluated and visual-

ized with regard to the bioactivities of the 

molecules. From Figure 3, it is clear that the 

distribution of most molecules in the Lipinski 

descriptor chemical space satisfies Lipinski 

criteria of drug likeness. All the descriptors 

are validated to abide by nonparametric dis-

tributions.  

When performing Mann-Whitney U test 

between the two classes, molecular weight 

gets p-value=6.99e-05, LogP gets p-

value=5.90e-10 and nHD gets p-value=0.058, 

while the p-value for nHA is 0.283. The p-

values calculated from Mann-Whitney U test 

indicate the statistical significance of differ-

ences between classes. As seen from Table 3, 

the overall molecular weight and LogP of 

molecules in the active class are higher than 

those in the inactive class. While, the number 

of hydrogen bond acceptors and donors 

amongst the two classes are not significantly 

different. 

 

Classification model and hyperparameter 

tuning 

Classification modeling aims to establish 

the relationship between molecular finger-

prints and bioactivity classes. All 12 sets of 

fingerprints are used to build the model. Ran-

dom forest algorithm is set by default to in-

clude estimators=500, max_features=3 with 

random state 42. In Table 4, the performance 

metrics with default hyperparameters is listed. 

From the table, KlekotaRothCount fingerprint 

provides the best overall accuracy, recall, F1 

score and MCC values. And due to its inter-

pretability for biologists and pharmacists, it is 

used for the classification model and feature 

importance. 

https://sciwheel.com/work/citation?ids=171753&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=171753&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=171753&pre=&suf=&sa=0
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Figure 3: Distribution of Lipinski’s descriptors by bioactivities in which all the Lipinski descriptors includ-
ing A) molecular weight (MW), B) lipophilicity (LogP), C) number of hydrogen bond acceptor atom (nHA) 
and D) number of hydrogen bond donor atom (nHD) are calculated and compared between inactive and 
active classes. 
 
 
Table 3: Lipinski descriptor statistics of inactive and active classes 

 MW LogP nHA nHD 

Inactive Active Inactive Active Inactive Active Inactive Active 

Min 106.05 167.02 -6.32 -5.95 0 1 0 0 

Max 804.38 622.35 7.74 6.43 19 12 18 8 

Median 296.07 325.10 1.60 2.86 5 6 2 2 

Mean 303.50 335.92 1.08 2.58 5.75 5.48 2.70 1.99 

Skew 0.94 1.01 -0.74 -1.20 1.29 0.33 1.89 0.99 

 
 
Table 4: Summary of model performance built using 12 sets of molecular fingerprints using default 
model hyperparameters (n_estimators = 500, max_features = 3, random state=42) 

Fingerprint Training set   External set 

Ac Rec F1 MCC   Ac Rec F1 MCC 

AtomsPair2D 0.935 0.935 0.935 0.903   0.715 0.715 0.716 0.571 

AtomsPair2D Count 0.986 0.986 0.986 0.979   0.766 0.766 0.764 0.651 

CDK 0.986 0.986 0.986 0.979   0.766 0.766 0.764 0.651 

CDK extended 0.987 0.987 0.987 0.981   0.741 0.741 0.738 0.613 

CDK graphonly 0.973 0.973 0.973 0.960   0.791 0.791 0.789 0.69 

EState 0.832 0.832 0.832 0.748   0.665 0.665 0.661 0.5 

MACCS 0.97 0.97 0.97 0.95   0.722 0.722 0.719 0.586 

KlekotaRoth 0.948 0.948 0.948 0.922   0.722 0.722 0.719 0.583 

KlekotaRoth Count 0.978 0.978 0.978 0.967   0.766 0.766 0.765 0.650 

PubChem 0.956 0.956 0.956 0.934   0.703 0.703 0.699 0.558 

Substructure 0.84 0.84 0.84 0.762   0.627 0.627 0.622 0.447 

Substructure Count 0.962 0.962 0.962 0.943   0.734 0.734 0.732 0.601 
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After selecting KlekotaRothCount fingerprint 

as the one for further modeling, hyperparam-

eters are tuned to optimize the model perfor-

mance. The results for hyperparameter tuning 

are demonstrated in Figure 4. The optimal hy-

perparameter is n_estimators = 150, and 

max_features = 5. After that, the confusion 

matrix of its performance is shown in Figure 

5.  

Then the optimized parameters are ap-

plied to the KlekotaRothCount fingerprint, 

and the model performance gets improved as 

shown in Table 5.  

 

        

Figure 5: Confusion matrix of experimental versus predicted bioactivity classes of model built using 
KlekotaRothCount fingerprints as evaluated on training (A) and test (B) sets after hyperparameter tuning 

 
  

Figure 4: Hyper-
parameter tuning 
for random forest 
classifier. The 
lighter the color, 
the better the com-
bination of the hy-
perparameters, 
from the figure, hy-
perparameter 
n_estimators 
=150, max_fea-
tures=5 generates 
the best perfor-
mance.  
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Table 5: Summary of performance for random forest model built with tuned hyperparameters (n_esti-
mators =150, max_features=5, random state=42). 

 
Fingerprint Training set 10-fold CV set External set 

Ac Rec F1 MCC Ac Rec F1 MCC Ac Rec F1 MCC 

KlekotaRoth-

Count 

0.978 0.978 0.978 0.967 0.753 0.753 0.751 0.633 0.778 0.778 0.777 0.669 

 

 

Feature importance 

Shown in Figure 6 is the intrinsic feature 

importance ranking of the random forest algo-

rithm. Top 20 ranked features are selected for 

mechanistic interpretation. 

As can be seen from the above feature im-

portance plot, the 20 top-ranked features are 

listed and described in Table 6. Based on the 

nature of these KlekotaRothCount finger-

prints, which can be categorized as nitrogen-

containing features, sulfur-containing fea-

tures, aromatic features, carbonyl group fea-

tures, and aliphatic features.  

 

Mechanistic interpretation of feature  

importance  

Mechanistic interpretation of selected  

features 

NDM-1, as a metallo-beta-lactamase, tar-

gets amide bonds via nucleophile attack on 

the carboxyl carbons to hydrolize the sub-

strate antibiotics. NDM-1 has the typical 4-

layer sandwich conformation, with 2 β-sheets 

in the middle, surrounded by 4 α-helixes, and 

two zinc ions in the active sites (Linciano et 

al., 2019). Almost all of the zinc ion coordi-

nation residues amongst metallo-beta-lac-

tamases are highly conserved. In NDM-1, 

zinc1 is coordinated by H116, H118, H196, 

forming a tetrahedral sphere along with a wa-

ter molecule, and the zinc2 is coordinated by 

D120, C221, H263, forming trigonal pyrami-

dal sphere along with two water molecules 

(Linciano et al., 2019). Due to the key roles of 

zinc ions and the highly conserved zinc-coor-

dinating residues, they have become the pri-

mary targets of concurrent NDM-1 inhibitors 

(Wang et al., 2021).  

Inhibitors targeting the active site of 

NDM-1 work by binding to the zinc ions to 

form ternary complexes to competitively in-

hibit the hydrolysis of substrate antibiotics, or 

by stripping zinc ions from the enzyme so as 

to prevent the enzyme from launching nucle-

ophile attack on the substrate antibiotics. In 

this study, NGL viewer, Poseview and Lig-

Plot, are used to visualize and analyze the 

mechanism of action of NDM-1 inhibitors 

and confirm the role of selected important 

features in NDM-1 inhibition (Stierand et al., 

2006; Laskowski and Swindells, 2011; Fähr-

rolfes et al., 2017; Rose et al., 2018).  

Nitrogen-containing features 

From amongst the top 20 ranked features, 

nitrogen-containing features account for 7 

(35 %). They are KRFPC 4080, 3882, 677, 

3608, 3750, 4287 and 3943. Amongst the fea-

tures, KRFPC 677, 3750, 4287 and 3943 be-

long to amines. Amine is defined as any class 

of basic organic compounds derived from am-

monia by the replacement of hydrogen with 

alkyl or aryl groups. Amines are nucleophiles 

that can bond to a variety of electrophiles. 

Due to the lone pair of electrons, amines are 

basic in nature, and they can form hydrogen 

bonds. Shown in Figure 7 is the ligand-en-

zyme interaction profile for nitrogen-contain-

ing feature.  

The nitrogen has a lone pair of electrons, 

with 3 substituents, it may bind to a fourth 

substituent, leaving a positive charge on the 

nitrogen atom, which can serve as intermedi-

ates for important reactions. Amongst NDM-

1 inhibitors, there are a number of significant 

molecules that contain amines, for example, 

Aspergillomarasmine A (AMA) and deriva-

tives, methisazone, and derivatives, cefaclor, 

aryl 2-aminoimidazole derivatives (Linciano 

et al., 2019). Another feature KRFPC 3608, 

which is the 2-methylpyridine, is widely seen 

https://sciwheel.com/work/citation?ids=11969198&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11969198&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11969198&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11969198&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11969198&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11969198&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11969198&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11969380&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11969380&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11969380&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1405450,5697482,1437487,5568969&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=1405450,5697482,1437487,5568969&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=1405450,5697482,1437487,5568969&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=1405450,5697482,1437487,5568969&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=1405450,5697482,1437487,5568969&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=1405450,5697482,1437487,5568969&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=1405450,5697482,1437487,5568969&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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in novel categories of anti-NDM 1 agents. For 

example, N-acylhydrazones and diaryl-sub-

stituted thiosemicarbazones contain 2-

methylpyridine groups (Gao et al., 2021, Li et 

al., 2021b). Pyridine is a heterocycle with ni-

trogen. Due to the nitrogen in the ring, which 

results in relatively lower electron density of 

the carbon atoms of the ring, pyridine-con-

taining molecules undergo nucleophilic sub-

stitution reactions more easily than corre-

sponding benzene derivatives. The feature is 

present in a few zinc chelators, such as tris (2-

pyridylmethyl)amine (TPA) and N,N,N',N'-

tetrakis (2-pyridylmethyl)ethylenediamine 

(TPEN) (Schnaars et al., 2018; He et al., 

2020). The tris(2-pyridylmethyl) amine 

(TPA) is a zinc chelator and its derivatives are 

synthesized as NDM-1 inhibitors by stripping 

the zinc ions in the active site. This is a tripo-

dal ligand scaffold that is widely used in the 

coordination and chelation of zinc ions 

(Huang et al., 2013). Within the trigonal lig-

and scaffold, there are three identical 2-

methylpyridine groups as the metal coordina-

tor. The 2-methylpyridine groups are im-

portant in forming the coordination complex. 

 

 
Figure 6: Bar plot of feature importance of the classification model. The top 20 KlekotaRothCount fin-
gerprints are demonstrated in the horizontal bar chart. 
 

https://sciwheel.com/work/citation?ids=11969419,11969421&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969419,11969421&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969419,11969421&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969419,11969421&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969419,11969421&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969419,11969421&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969419,11969421&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969419,11969421&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969443,12572375&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969443,12572375&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969443,12572375&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969443,12572375&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969443,12572375&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11969443,12572375&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=12572162&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12572162&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12572162&pre=&suf=&sa=0


EXCLI Journal 2022;21:1331-1351 – ISSN 1611-2156 

Received: August 30, 2022, accepted: November 10, 2022, published: November 16, 2022 

 

 

1343 

Table 6: Feature importance from RF model built using KlekotaRothCount fingerprint 

Feature name  SMARTS pattern Description 

KRFPC 4331  O Oxygen  

KRFPC 2975  C Carbon  

KRFPC 1566  [!#1]c1[cH][cH][cH][cH]c1[!#1] 1,2-substituted benzene 

KRFPC 1564  [!#1]c1[cH][cH][cH][cH][cH]1 Phenyl group 

KRFPC 4080  N Nitrogen  

KRFPC 1642  [!#1]c1[cH][cH]c([!#1])[cH][cH]1 1,4-substituted benzene 

KRFPC 297  [!#1][CH2][!#1] Aliphatic carbon 

KRFPC 3224  CC Carbon-carbon bond 

KRFPC 669  [!#1][CH3] Methyl group 

KRFPC 3882  CN Carbon-nitrogen bond 

KRFPC 1148  [!#1][OH] Hydroxyl group 

KRFPC 677  [!#1][NH][!#1] Secondary amine  

KRFPC 3608  Cc1ccccn1 2-methylpyridine 

KRFPC 2949  [OH] Hydroxyl group 

KRFPC 2855  [!#1]S[!#1] Sulfide  

KRFPC 1193  [!#1]C(=O)[!#1] Ketone 

KRFPC 3750  CCN Ethylamine  

KRFPC 4287  NCc1ccccc1 Benzylamine  

KRFPC 3025  C=O Carbonyl group 

KRFPC 3943  CNc1ccccc1 N-methylaniline  

KRFPC 4843  S Sulfur  

 

Sulfur-containing features 

There are 2 sulfur-containing features: 

KRFPC 2855 and KRFPC 4843. KRFPC 

2855 is the sulfur with two R groups, while 

KRFPC 4843 is the indication of sulfur in the 

molecule. The presence of sulfur in an organic 

molecule is indicative of an organosulfur 

compound. Amongst NDM-1 inhibitors, there 

are many of them containing the sulfur, such 

as L-captopril, D-captopril, thiol derivatives, 

mercapto acid derivatives, thioester deriva-

tives, etc (Li et al., 2014; Zhang et al., 2019; 

Ma et al., 2021). Thiol group is capable of in-

teracting directly with the zinc ion to cripple 

the enzyme. While for sulfur with two R 

groups, sulfide group, it can form hydrogen 

bonds with residues to stabilize the complex 

as shown in Figure 8. For example, molecular 

docking has indicated that sulfur on the amino 

acid thioester derivative 1 can form hydrogen 

bond with serine 223, which facilitates the 

complex and affinity (Zhang et al., 2019).  

 

Aromatic features 

There are 6 features that contain aromatic 

rings. They are KRFPC 1566, 1564, 1642, 

3608, 4287 and 3943. KRFPC 1566, 1564 and 

1642 are phenyl groups of various substitu-

tions. The presence of phenyl groups amongst 

NDM-1 inhibitors is very common. For ex-

ample, ebselen, some thiol-containing com-

pounds, cyclic boric acid derivatives, and pyr-

idinedicarboxylic acid derivatives (Li et al., 

2014). The presence of benzene rings is very 

important for forming hydrophobic interac-

tions and electrostatic interactions with 

NDM-1 active site residues. For example, in 

rhodanine derivatives, the benzene rings can 

form hydrophobic interactions with Gln60, 

Trp87, Gly160, these interactions facilitate 

the binding to the active sites to make it more 

potently anchored (Xiang et al., 2018). On the 

other hand, benzene rings can affect the water 

solubility of compounds. The presence of 

benzene rings can increase the hydrophobi-

city of molecules. The latter three aromatic 

features all contain nitrogens, and have been 

discussed in nitrogen-containing features.
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Figure 7: NDM-1 crystal structure and active site. From PDB 3S0Z (A). The binding modality of D-
captopril derivative against the active site of NDM-1 (PDB ID: 6LJ4) (B) and 2D interaction diagram 
generated by Ligplot+ (C), which highlight the role of nitrogen atom and the adjacent aliphatic carbons 
in stabilization of the protein-ligand complex.  
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Figure 8: Ligplot illustration of thiol group in ligand/NDM-1 interaction. A and C are the D-captopril de-

rivative from PDB 6LIZ, B and D are the tiopronin from PDB 5A5Z.  

 

 

 

Carbonyl features 

There are two carbonyl features, KRFPC 

1193 and KRFPC 3025. Due to the high po-

larity of the carbonyl bond, they are polar and 

hydrogen bond acceptors. Carbonyl groups 

exist in ketones, aldehydes or carboxylic ac-

ids. The carbon-oxygen double bond forms 

hydrogen bond with adjacent NDM-1 active 

site residues as shown in Figure 9. 

Aliphatic features 

KRFPC 2975, 297, 3224, 669 belong to 

aliphatic features. KRFPC 669 is the methyl 

group. As a non-polar functional group, it is 

important in forming non-polar covalent 

bonds, or hydrophobic interactions with adja-

cent residues as shown in Figure 10. 

 

Limitation of the study 

First and foremost, as this is a pure com-

putational study on drug discovery, there’s a 

lack of in vitro experiment support. Secondly, 

although the study utilizes data from reliable 

literature and accredited chemical databases, 

the scale and diversity of the dataset are not 

large and broad enough to cover more por-

tions of chemical space. Last but not least, 

currently, there are some novel categories of 

compounds, such as peptidomimetics, oligo-

mer nucleic acid drugs, nanoparticles (Sully 

et al., 2017; Kazi et al., 2020), etc that may 

play roles as NDM-1 inhibitors, this study 

doesn’t involve these novel compounds. This 

is also due to the lack of related data in this 

field. 
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Figure 9: The binding modality of L-captopril against the active site of NDM-1 (PDB ID: 4EXS) (A and 

B) and 2D interaction diagram generated by Ligplot+ (C), the carbonyl groups act as hydrogen bond 
acceptor with Asn220 to facilitate the pocket formation. 

 
 

Figure 10: Ligplot illustration of methyl group in 
ligand/NDM-1 interaction. This is heteroaryl phos-
phonate derivative with NDM-1, from PDB 6D1J. 
The two methyl groups form hydrophobicity with 
Asn220A, marked by the green spline section. 

 

 

CONCLUSION 

Antimicrobial resistance is a significant 

global challenge. NDM-1 as a metallo-beta-

lactamase is one of the most perplexing fac-

tors in public health and infection control by 

causing antimicrobial resistance. However, 

until now, there are no effective drugs for 

NDM-1 and the structure-activity relationship 

remains largely unknown. In this study, a 

QSAR model using currently available NDM-

1 inhibiting compounds has been made, via a 

random forest algorithm and 12 sets of molec-

ular fingerprints from the PaDEL package. 

And metrics for model performance evalua-

tion have indicated that KlekotaRothCount 

fingerprint set provides the best performance 

and model robustness. Feature importance 

ranking after hyperparameter tuning has 

demonstrated that amine group, 2-methylpyr-

idine group, sulfur, aromatic features, car-

bonyl groups and certain aliphatic hydrocar-

bons are the features that contribute to NDM-

1 inhibiting activities. The findings from this 
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study can facilitate drug discovery of NDM-1 

inhibitors and can be a guideline for further 

optimization.  
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