The bovine dialyzable leukocyte extract, immunepotent CRP, synergically enhances cyclophosphamide-induced breast cancer cell death, through a caspase-independent mechanism
DOI:
https://doi.org/10.17179/excli2022-5389Keywords:
cyclophosphamide, synergistic effect, breast cancer, Cell death, chemotherapy, apoptosisAbstract
Breast cancer (BC) is one of the leading causes of cancer death worldwide. Cyclophosphamide (CTX) remains a mainstay in cancer therapy despite harmful adverse effects and cell death-resistances. To face this, combinational therapy of chemotherapies and immunotherapies has been proposed. IMMUNEPOTENT CRP (ICRP) is an immunotherapy that has cytotoxic effects in several cancer cells without affecting peripheral blood mononuclear cells (PBMC) and CD3+ cells. The aim of this study was to evaluate cytotoxicity, the type of cytotoxic effect, and several features involved in cell death induced by the combination of CTX with ICRP (ICRP+CTX) in breast cancer cells as well as their effect on healthy cells. For this purpose, human and murine breast cancer cells, MCF-7, MDA-MB-231 and 4T1, or PBMC were treated for 24 hours with ICRP, CTX or ICRP+CTX in different combination ratios for the assessment of cell death. Flow cytometry and microscopy were used to determine biochemical and morphological characteristics of cell death. Assays showed that ICRP in combination with CTX induce potentiated cell death manifested with morphological changes, loss of mitochondrial membrane potential, reactive oxygen species (ROS) production, and caspase activation. In addition, it was determined that ICRP+CTX-cell death is caspase-independent in all the breast cancer cells assessed. On the other hand, ICRP did not affect CTX-cytotoxicity in PBMC. For all the above, we can propose that the combination of ICRP with CTX an effective combination therapy, promoting their use even in tumoral cells with defects on proteins implicated in the apoptotic pathway.
Downloads
Additional Files
Published
How to Cite
License
Copyright (c) 2023 Ana Luisa Rivera-Lazarín, Ana Carolina Martinez-Torres, Rafael de la Hoz-Camacho, Olga Liliana Guzmán-Aguillón, Moisés Armides Franco-Molina, Cristina Rodríguez-Padilla
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).