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ABSTRACT 

Cancer is the leading cause of death worldwide, resulting in the mortality of more than 10 million people in 2020, 

according to Global Cancer Statistics 2020. A potential cancer therapy involves targeting the DNA repair process 

by inhibiting PARP-1. In this study, classification models were constructed using a non-redundant set of 2018 

PARP-1 inhibitors. Briefly, compounds were described by 12 fingerprint types and built using the random forest 

algorithm concomitant with various sampling approaches. Results indicated that PubChem with an oversampling 

approach yielded the best performance, with a Matthews correlation coefficient > 0.7 while also affording inter-

pretable molecular features. Moreover, feature importance, as determined from the Gini index, revealed that the 

aromatic/cyclic/heterocyclic moiety, nitrogen-containing fingerprints, and the ether/aldehyde/alcohol moiety were 

important for PARP-1 inhibition. Finally, our predictive model was deployed as a web application called 

PARP1pred and is publicly available at https://parp1pred.streamlitapp.com, allowing users to predict the biological 

activity of query compounds using their SMILES notation as the input. It is anticipated that the model described 

herein will aid in the discovery of effective PARP-1 inhibitors. 
 

Keywords: PARP-1, DNA repair, machine learning, QSAR, webserver, cheminformatics 

 

 

INTRODUCTION 

Precision medicine is becoming increas-

ingly important in treating many cancers be-

cause it can reduce side effects compared with 

conventional therapies (Baudino, 2015). Sev-

eral clinical trials have shown evidence of 

success, especially targeting DNA repair 

(Brown et al., 2017). For example, an ovarian 
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phase 2 clinical trial, in which platinum-sen-

sitive patients were given the PARP-1 inhibi-

tor olaparib as a maintenance treatment, 

showed an improvement in progression-free 

survival (Ledermann et al., 2012). In a phase 

3 OlympiA clinical trial, in which olaparib 

was administered as an adjuvant to BRCA1/2-

mutated breast cancer patients following 

completion of local treatment and neoadju-

vant or adjuvant chemotherapy, the treatment 

group exhibited significantly longer survival, 

free of invasive or distant disease, than the 

placebo group (Tutt et al., 2021). Moreover, 

the phase 2 TOPARP-A trial showed that pa-

tients who had metastatic prostate cancer, 

who were no longer responding to standard 

treatments, and who had defects in DNA-re-

pair genes, had a high response rate toward 

olaparib (Mateo et al., 2015). 

DNA repair is a critical cellular process 

that ensures the integrity of the genome, al-

lowing the parental cell to pass genetic infor-

mation on to the progeny cell. Defective DNA 

repair causes accumulation of genetic muta-

tions, thus leading to carcinogenesis. How-

ever, retaining some DNA repair activities is 

also important for cancer survival, especially 

when cells are under genotoxic stress (such as 

radio- and chemotherapy) (Helleday et al., 

2008). DNA double-strand break (DSB) le-

sions are the most toxic form of DNA dam-

age, which, if left unrepaired, result in cell 

death (Shibata and Jeggo, 2014). Therefore, 

drugs are of interest if their mode of action 

leads to the accumulation of DSBs (Sri-

vastava and Raghavan, 2015).  

Poly (ADP-ribose) polymerase (PARP) is 

an enzyme that catalyzes the ADP-ribosyla-

tion of a specific protein, resulting in the co-

valent binding of a single ADP-ribose unit or 

polymers of ADP-ribose units (Gupte et al., 

2017). In humans, there are 17 members of 

the family, although only three (PARP-1, 

PARP-2, and PARP-3) are involved in DNA 

repair (Beck et al., 2014). Among the three, 

PARP-1 (EC 2.4.2.30) was identified in 1963 

and is the most extensively investigated DNA 

repair enzyme (Gupte et al., 2017). By inhib-

iting PARP-1, DSB accumulation was in-

duced in cancer cells deficient in BRCA1/2, 

indicating that PARP-1 is a druggable target 

(Mateo et al., 2019). Olaparib was the first 

well-known PARP-1 inhibitor, and it has been 

used as a targeted therapy to treat ovarian, 

breast, prostate, and pancreatic cancer pa-

tients with BRCA1/2 mutations (de Bono et 

al., 2020; Fong et al., 2009; Golan et al., 2019; 

Kim et al., 2015). Recently, five more PARP-

1 inhibitors, rucaparib (Balasubramaniam et 

al., 2017), niraparib (Mirza et al., 2016; Scott, 

2017), talazoparib (Hoy, 2018), fluzoparib (Li 

et al., 2021), and pamiparib (Xu et al., 2021) 

have been approved by the Food and Drug 

Administration (FDA). However, access to 

targeted therapy has been restricted in certain 

countries, particularly middle- and low-in-

come countries, because of a lack of afforda-

bility or the capability to develop domestic 

pharmaceutical technology, which poses a 

threat to health security (Fundytus et al., 

2021; Ocran Mattila et al., 2021). As a result, 

accelerating drug discovery in such countries 

is an important factor to minimize such risk. 

The computational-aided drug design 

(CADD) approach significantly reduces the 

time and cost associated with drug discovery 

(Nantasenamat and Prachayasittikul, 2015). 

With the availability of public bioactivity da-

tabases such as BindingDB (Gilson et al., 

2016), PubChem (Kim et al., 2016), GtoPdb 

(Armstrong et al., 2020), and ChEMBL 

(Mendez et al., 2019), we can retrieve the bi-

oactivity data and analyze the relationship be-

tween the chemical structures of compounds 

and their biological activities, termed the 

quantitative structure–activity relationship 

(QSAR) (Carracedo-Reboredo et al., 2021; 

Nantasenamat and Prachayasittikul, 2015). 

Developing a QSAR model involves two 

main steps: 1) molecular structure descrip-

tion; and 2) multivariate analysis to correlate 

molecular descriptors with observed biologi-

cal activities (Nantasenamat et al., 2009). The 

first step is to define chemical structures as 

numerical representations of their physico-

chemical properties. The second step employs 
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statistical methods to establish the relation-

ship between the independent variables (e.g., 

molecular descriptors) and the dependent var-

iables (e.g., biological activities). As a result, 

the QSAR model is used to predict the effects 

of molecular descriptor changes on biological 

activities, as shown by the design of inhibitors 

against a variety of targets, such as antiviral 

(Malik et al., 2020; Worachartcheewan et al., 

2014), anti-inflammatory (Kanan et al., 

2021), and anticancer (Nantasenamat et al., 

2014; Schaduangrat et al., 2021). We con-

structed predictive models for drug discovery 

using a biological dataset of PARP-1 inhibi-

tors. 

Many studies have investigated in silico 

screening of PARP-1 inhibitors, including 

QSAR, molecular modeling, molecular dock-

ing, molecular dynamics simulation (MD), 

and proteochemometric modeling (Abbasi-

Radmoghaddam et al., 2021; Cortes-Ciriano 

et al., 2015; Halder et al., 2015; Li et al., 2016; 

Revathi et al., 2021). Halder and colleagues 

(2015) used comparative in silico studies, in-

cluding 2D-QSAR, kernel-based partial least 

square (KPLS) analysis, pharmacophore 

search engine (PHASE) pharmacophore map-

ping, molecular docking, molecular mechan-

ics with generalized Born and surface area 

solvation (MM-GBSA) analysis, and Gauss-

ian-based 3D-QSAR analyses on docked 

poses to explore the structure–activity rela-

tionship of PARP-1 inhibitors (Halder et al., 

2015). They used 254 compounds targeting 

PARP-1 from Merck Research Laboratories 

to conduct the analysis. They found that polar 

interactions play an important role to leverage 

the activity of PARP-1. Moreover, the posi-

tive ionizable feature of ligands also plays a 

key role to differentiate between highly active 

and inactive compounds. Revathi and col-

leagues (2021) used 71 compounds that were 

phthalazinone and 4-carboxamide benzimid-

azole derivatives to develop ligand-based 

pharmacophores (Revathi et al., 2021). They 

used Pharmacophore Alignment and Scoring 

Engine to identify the pharmacophore sites 

and later developed the ADHRR.1031 phar-

macophore hypothesis as a 3D-QSAR model. 

Furthermore, the model was validated using 

1,000,000 ligands from various databases and 

analyzed through virtual screening. The dock-

ing analysis revealed the importance of hy-

drogen bonding between Gly863 and Ser904 

of PARP-1 with ligands. Additionally, hydro-

gen bond formation with Ser864 and 𝜋-𝜋 in-

teraction with His862, Arg878, and His909 

were also observed in the docking analysis. 

Sahin and Durdagi (2021) aimed to identify 

novel piperazine-based PARP-1 inhibitors 

(Sahin and Durdagi, 2021). They used text 

mining to search for molecules containing pi-

perazine as a main scaffold from the Specs-

SC database. The sorted molecules were then 

analyzed by molecular docking, in which the 

ten highest docking scores were further sub-

jected to molecular dynamics (MD) to calcu-

late the free binding energy using the molec-

ular mechanics/generalized born surface area 

method. They identified molecule-1388 as a 

potential candidate compound to selectively 

inhibit PARP-1. This compound had crucial 

hydrogen bonds with Gln759 and Met890 and 

𝜋-𝜋 interaction with Tyr889. Abbasi-Rad-

moghaddam and colleagues (2021) conducted 

a QSAR and molecular modeling study that 

predicted the IC50 values (the concentration of 

inhibitor at which the enzymatic activity is re-

duced by half) of 1H-benzo[d]immidazole-4-

carboxamide derivatives (Abbasi-Rad-

moghaddam et al., 2021). They built a QSAR 

model based on the genetic algorithm–multi-

ple linear regression (GA–MLR) and least 

squares–support vector machine (LS–SVM) 

methods. Moreover, they performed molecu-

lar docking analysis to reveal the chemical in-

teractions between the substructure in each 

compound and PARP-1, as well as to calcu-

late the free energy binding. They reported 

nine compounds, which given the best value 

of IC50, showed an improvement in PARP-1 

inhibition of 33.394 %. Li and colleagues 

(2016) used a molecular docking approach to 

screen compounds from the ZINC database 

against PARP-1 (Li et al., 2016). Grid and 

amber scoring were used to calculate the area 

under the curve from the receiver operating 

characteristic. The selected compounds were 
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further analyzed through MD. Finally, they 

proposed ZINC67913374 as a candidate com-

pound to inhibit PARP-1 activity. Prote-

ochemometry was also performed by Cortés-

Ciriano and colleagues (2015) to develop a 

model to explore the relationship between 

PARP inhibitors and various PARP isoforms, 

including PARP-1 (Cortes-Ciriano et al., 

2015). They used both chemical (Morgan fin-

gerprints) and protein (binding site amino 

acid (AADescs) and full protein sequence 

(SeqDescs) descriptors as independent varia-

bles, while thermal shift values retrieved from 

Differential Scanning Fluorimetry (DSF) 

were treated as dependent variables. The 

models were built based on random forests, 

which were then further examined for the 

confidence intervals to understand the relia-

bility of the predictive performance for either 

new compounds or PARP isoforms. Alto-

gether, these studies show that computational 

approaches are useful to identify novel inhib-

itors of PARP-1. 

In this study, we used Python-based pro-

gramming to retrieve the biological activities 

of human PARP-1 from ChEMBL (Mendez 

et al., 2019). We extracted a total of 2018 non-

redundant compounds with known IC50 val-

ues. All the inhibitors were converted to 12 

different molecular descriptors and further 

built with 12 different machine learning mod-

els. Of the 144 models, the PubChem random 

forest model was chosen, because it was in-

terpretable and it robustly classified sub-

stances as active or inactive, as indicated by 

MCC values > 0.7 of the training and CV sets 

in all three sampling approaches. Addition-

ally, the important chemical fingerprints that 

contributed to the constructed model were ex-

amined. In-depth analysis of the top 20 de-

scriptors demonstrated that aromatic/hetero-

cyclic and nitrogen-containing characteristics 

are important for PARP-1 inhibition. Lastly, a 

web server was built to make this prediction 

accessible in the public domain. This will ac-

celerate the discovery of new and diverse in-

hibitors against PARP-1. 

 

MATERIALS AND METHODS 

Data compilation and curation 

The dataset of PARP-1 (ChEMBL ID: 

CHEMBL3105) inhibitors was compiled us-

ing data from the ChEMBL database, release 

29 (Mendez et al., 2019), which includes an 

initial set of 5094 bioactivity data points and 

3738 compounds. The data were retrieved 

through a Python-based library 

(https://pypi.org/project/chembl-webre-

source-client/) which enables users to cache 

all results in the local file system for faster re-

trieval (Davies et al., 2015). The IC50 values, 

containing 2815 data points and 2429 com-

pounds, were chosen for further curation. Be-

cause the purpose of this study was to create 

a classification model for PARP-1 inhibition, 

we defined active as ≤ 1 µM (n = 1720) and 

inactive as ≥ 10 µM (n = 298). The interme-

diates with concentrations ranging between 1 

and 10 µM were discarded (n = 334). Finally, 

we obtained 2018 non-redundant and curated 

active and inactive compounds for further 

analysis. 

 

Molecular descriptor analysis 

The PaDEL-Descriptor software was used 

to calculate molecular fingerprints for each 

compound in the dataset (Yap, 2011). As pre-

viously described by Malik and colleagues 

(2020), molecular fingerprints are numerical 

values that represent both qualitative and 

quantitative chemical structures (Malik et al., 

2020). Thus, they are crucial for QSAR stud-

ies. The software computes 12 types of finger-

prints which belong to nine classes, namely, 

Atom Pairs 2D, CDK, CDK extended, CDK 

graph only, E-state, Klekota–Roth, MACCS, 

PubChem, and Substructure. Moreover, Atom 

Pairs 2D, Klekota–Roth, and Substructure are 

available in two versions. The first version in-

dicates the presence or absence of the de-

scriptors using the values 1 and 0, while the 

second version indicates the descriptor’s fre-

quency value. The structures in SMILES for-

mat were pre-processed by removing salt, de-

tecting aromaticity, standardizing nitro 

groups, and standardizing tautomers, before 

https://pypi.org/project/chembl-webresource-client/
https://pypi.org/project/chembl-webresource-client/
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being subjected to molecular fingerprint cal-

culation. 

 

Data filtering 

During the feature selection process, low 

variance variables were not useful for the 

model’s predictive capability. Therefore, con-

stant and near constant variables were omitted 

from the selection of fingerprint descriptor 

sets to reduce model complexity and bias. The 

constants of the fingerprint descriptors were 

calculated using a standard deviation (SD) of 

0.1 as a cut-off value. Thus, variables with SD 

values of less than 0.1 were selected for fur-

ther analysis. 

 

Data splitting for model construction 

The Kennard–Stone algorithm was used 

to divide the data into an 80/20 ratio (Kennard 

and Stone, 1969), of which 80 % was as-

signed as an internal set (1614 compounds, 

active = 1380, inactive = 234) and the remain-

ing 20 % was used as an external set (404 

compounds, active = 340, inactive = 64) to 

validate the model. The internal dataset was 

further divided into balanced and imbalanced 

datasets and used as the training dataset, 

which was subjected to five-fold cross-valida-

tion. 

 

Statistical analysis 

We present chemical descriptors of each 

molecule according to the previous study by 

Schaduangrat and colleagues (2021). Briefly, 

this uses six common descriptive statistical 

parameters: minimum (Min), first quartile 

(Q1), median, mean, third quartile (Q3), and 

maximum (Max). All the parameters were 

visualized as a box plot using the seaborn and 

matplotlib data visualization packages in Py-

thon. Lipinski’s rule-of-five parameters were 

compared between active and inactive groups 

using the Mann–Whitney U test, with p < 0.05 

indicating a significant difference. 

 

Multivariate analysis 

Twelve machine learning classification 

models were constructed from the internal da-

taset: decision trees, extra trees, Gaussian Na-

ive Bayes, Gaussian process, gradient boost-

ing, K-neighbors, light gradient boosted ma-

chine, multi-layer perceptron, quadratic dis-

criminant analysis, random forest, C-support 

vector, and extreme gradient boosting. The 

model construction was developed using the 

scikit-learn library (Pedregosa et al., 2011) in 

Python. Each type of model had different 

characteristics to determine the relationship 

between the dependent variables and the inde-

pendent variables. Gradient boosting, random 

forest, extra trees, light gradient boosted ma-

chine, and extreme gradient boosting were 

grouped as ensemble methods, which gener-

ate many models and combine them to get the 

best model. Multi-layer perceptron was part 

of the neural network, which was considered 

a black box model and could not be inter-

preted. Decision tree was used to learn simple 

decision rules retrieved from the data fea-

tures. K-neighbors is a type of instance-based 

learning in which the classification of certain 

data is based on most of its nearest neighbors. 

Support vector machine draws a hyperplane 

to separate two or more classes in the best 

possible manner. The Gaussian process uses a 

Gaussian distribution to fit random points of 

data, whereas quadratic discriminant analysis 

estimates the means and covariances from the 

data and assigns a new observed data point to 

the class with the greatest likelihood. Lastly, 

Gaussian Naive Bayes assumes each feature 

follows Gaussian distribution, calculates the 

probability from each feature at a given class, 

and multiplies all the probabilities of each 

feature. 

 

Model validation 

We used a variety of statistical parameters 

to evaluate the performance of the models, in-

cluding true positives (TP), true negatives 

(TN), false positives (FP), and false negatives 

(FN). The model’s fitness was determined us-

ing the following statistical parameters: over-

all prediction accuracy (Ac), sensitivity (Sn), 

specificity (Sp), and Matthews correlation co-

efficient (MCC). 
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𝐴𝑐 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

 

𝑆𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

𝑆𝑝 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
  

 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

Applicability domain analysis 

To estimate the chemical space in which 

the model can make reliable and accurate pre-

dictions for compounds based on similarity 

with the compounds on which the model was 

constructed, we used the PCA bounding box 

to determine the applicability domain (AD) of 

compounds from the training (internal) and 

test (external) sets. Compounds that fall in-

side the AD of the model are typically pre-

dicted reliably. 

 

Reproducibility research 

The data and code used in the study are 

deposited on GitHub at 

https://github.com/tlerk-

suthirat/data_driven_PARP1. 

 

Development of the PARP-1 web server 

The best predictive model was exported as 

model.pkl and is used in the deployed web 

server developed in Python using Streamlit 

version 1.12.0. Particularly, the Streamlit web 

app accepts the input SMILES notation of 

query molecule and converts this into an im-

age file of the 2D chemical structure via rdkit-

pypi version 2022.3.5. Subsequently, the 

SMILES notation is used to compute the Pub-

Chem molecular fingerprint using padelpy 

version 0.1.10. The best machine learning 

model, which was built using the random for-

est algorithm with scikit-learn version 1.0.2, 

is applied on the computed fingerprint of the 

query molecule where the bioactivity is pre-

dicted. The PARP1pred web app is publicly 

available at https://parp1pred.streamlit.app/ 

while the data and code used for building this 

app is deposited on GitHub at 

https://github.com/dataprofessor/parp1. 

RESULTS AND DISCUSSION 

The entire workflow for constructing the 

model is summarized in Figure 1. 

 

Chemical space analysis 

The aim of performing chemical space 

analysis between active and inactive com-

pounds is to understand the difference in 

chemical characteristics between two groups. 

We first explored the relationship between 

molecular weight (MW) and the Ghose–Crip-

pen–Viswanadhan octanol-water partition co-

efficient (LogP), as shown in Figure 2 (Wild-

man and Crippen, 1999). LogP is a lipophilic 

descriptor that can be used to determine the 

permeability of molecules to the cell mem-

brane, thereby indicating their drug-likeness 

molecule (van de Waterbeemd, 2008). Next, 

Lipinski’s rule-of-five (Ro5) descriptors were 

employed to investigate the difference in 

chemical features between active and inactive 

compounds, as shown in Figure 3. The Ro5 

are composed of four parameters, namely 

MW (< 500 kDa), LogP (< 5), the number of 

H-bond donors (NumHDonors < 5), and the 

number of H-bond acceptors (NumHAccep-

tors < 10) (Lipinski et al., 2001). If any com-

pounds have values out of range for two pa-

rameters, they are likely to have poor absorp-

tion or permeability, and thus a higher rate of 

drug development failure. As illustrated in 

Figure 2, most compounds clustered between 

300 and 500 MW with a LogP of 2–4. More-

over, the Ro5 analysis and statistical analysis 

revealed that most of the active and inactive 

compounds following the Ro5 as illustrated 

by the box plots were under the cut-off values 

(dashed line, Figure 3). The Mann–Whitney 

U test found a significant difference in MW, 

NumHDonors, and NumHAcceptors between 

active and inactive molecules, but no differ-

ence in LogP. Active molecules had a higher 

MW, NumHDonors, and NumHAcceptors 

than inactive molecules, as demonstrated by 

the circle in the boxplot (Figure 3). The mean 

± SD of MW in the active and inactive groups 

were 381.66 ± 87.93 and 349.35 ± 119.32, re-

spectively. NumHDonors had a mean ± SD of 

1.80 ± 0.82 for active molecules and 1.39 ± 0.79 

https://github.com/tlerksuthirat/data_driven_PARP1
https://github.com/tlerksuthirat/data_driven_PARP1
https://parp1pred.streamlit.app/
https://github.com/dataprofessor/parp1
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Figure 1: Overall workflow of the development of the webserver for PARP-1 inhibitors 

 

 

for inactive molecules, whereas the mean SD 

for NumHAcceptors was 4.56 ± 1.53 for ac-

tive molecules and 4.22 ± 2.06 for inactive 

molecules. Between the active and inactive 

molecules, the logP value was 2.66 ± 1.17 for 

active molecules and 2.61 ± 1.52 for inactive 

molecules. 

 

QSAR modeling 

To develop a robust QSAR model, we fol-

lowed the guidelines of the Organization for 

Economic Co-operation and Development 

(OECD, 2014). Briefly, a robust model 

should include, at least: 1) a defined endpoint 

for the dataset; 2) an unambiguous learning 

algorithm; 3) a defined applicability domain 

of the QSAR model; 4) appropriate measures 

of goodness-of-fit, robustness, and predicta-

bility; and 5) mechanistic interpretation of the 

QSAR model. Thus, to develop interpretable 

QSAR models, the molecular fingerprints in-

dicated in Table 1 were calculated using the  
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Table 1: Twelve different sets of fingerprint descriptors derived from the PaDEL-Descriptor software 

Fingerprint Number Description 

Atom Pairs 2D 780 Presence of atom pairs at various topological distances 

Atom Pairs 2D Count 780 Count of atom pairs at various topological distances 

CDK 1024 Fingerprint of length 1024 and search depth of 8 

CDK extended 1024 Extends the fingerprinter with additional bits describing ring features 

CDK graph only 1024 Specialized version of the fingerprinter which does not take bond orders into account 

E-state 79 E-State fragments 

Klekota-Roth 4860 Presence of chemical substructures 

Klekota-Roth Count 4860 Count of chemical substructures 

MACCS 166 MACCS keys 

PubChem 881 PubChem fingerprint 

Substructure 307 Presence of SMARTS patterns for functional group classification 

Substructure Count 307 Count of SMARTS patterns for functional group classification 

 

Figure 2: Illustration of the relation-
ship between molecular weight 
(MW) and Ghose–Crippen–Viswa-
nadhan octanol-water partition coef-
ficient (LogP). Blue and orange rep-
resent active and inactive com-
pounds. The size of the circle refers 
to the pIC50 value, which is the neg-
ative logarithmic of the IC50 concen-
tration (nM). 

Figure 3: Box plots of Lipinski’s 
rule-of five descriptors comparing 
between active and inactive 
groups. The dashed line represents 
cut-off values indicating drug-like 
molecules: molecular weight (MW) 
< 500, Ghose–Crippen–Viswa-
nadhan octanol-water partition co-
efficient (LogP) < 5, number of hy-
drogen bond donors (Num-
HDonors) < 5, number of hydrogen 
bond acceptors (NumHAcceptors) 
< 10. A circle represents the mean, 
and an asterisk indicates a signifi-
cant difference between two groups 
(p < 0.05). 
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PaDEL-Descriptor software, from which 

three fingerprints (PubChem, Substructure, 

and Klekota–Roth) are readily interpretable. 

We constructed 12 machine learning 

models from 12 molecular fingerprints to de-

termine which model gave the best perfor-

mance and was the most robust and interpret-

able. Because our imbalanced data contained 

more active compounds (n = 1720) than inac-

tive compounds (n = 298), we compared the 

models generated from both balanced and im-

balanced approaches. Prior to data splitting, 

we reduced the dimensionality of the data by 

selecting the fingerprint that rendered SD < 

0.1. The data were split into external and in-

ternal sets in an 80:20 ratio. The internal da-

taset (n = 1614), which contained 1380 active 

and 234 inactive compounds, was further di-

vided into balanced and imbalanced datasets. 

For the balanced dataset, the models were cre-

ated based on two methods: 1) under-

sampling, which randomly selected the ma-

jority class equal to the number of the minor-

ity classes; 2) oversampling, which amplified 

the number of minority classes equal to the 

number of the majority class.  

For the non-class weight balance of an im-

balanced dataset, the data were randomly se-

lected to develop the model without consider-

ation of the ratio between major and minority 

classes. Figures 4 and 5 demonstrate the heat 

maps of MCCtrain, MCCCV, MCCtest, 

MCCtrain−CV, and MCCtrain−test for each finger-

print, machine learning model, and sampling 

approach.  

Results showed that a balanced over-

sampling approach yielded the best value—

most of the MCCtrain and MCCCV values were 

more than 0.8. Moreover, most of the MCCtest 

values of oversampling were more than 0.7. 

The values of MCCtrain−CV in the over-

sampling group were lower than 0.2, whereas 

the values of MCCtrain−test in both balanced 

oversampling and imbalanced non-class 

weight were generally better than balanced 

undersampling, as the MCCtrain−test values of 

undersampling were mostly greater than 0.3. 

As a result, we considered the oversampling 

approach as a good candidate to compare the 

performance among each model and finger-

print. Figure 4B demonstrates that Gaussian 

Naive Bayes and quadratic discriminant anal-

ysis did not yield acceptable MCC values (< 

0.7) for all fingerprints. We further selected 

random forest (RF) over other machine learn-

ing methods because relevant features were 

able to be observed and the model was easily 

interpretable. As mentioned in the Methods 

section, RF is an ensemble method that has a 

root node as a starting point and splits into an 

N number of decision trees to learn the inher-

ent patterns from the input data (Breiman, 

2001). Following a thorough examination of 

all MCC values for the interpretable finger-

prints— PubChem, Substructure, and 

Klekota–Roth— the result suggested that a 

model based on PubChem was a good candi-

date. This was demonstrated by the MCC val-

ues for PubChem in the training, cross-valida-

tion, and test sets of 1, 0.96, and 0.74, respec-

tively, whereas the MCC values for Substruc-

ture and Klekota–Roth in the test set were 

0.66 and 0.68, respectively. As a result, the 

RF model that was developed using the over-

sampling approach from the PubChem finger-

print was the best option for model interpreta-

tion. Furthermore, as indicated in Figure 6, 

the applicability domain was determined us-

ing the PubChem fingerprint as the input for 

PCA analysis. A total of 2018 compounds 

were split into two subsets, which consisted 

of internal (80 %) and external (20 %) da-

tasets using the Kennard–Stone algorithm 

(Kennard and Stone, 1969). The internal set 

was used as the training dataset, subjected to 

random sampling, and the predictive model 

was constructed with five-fold cross-valida-

tion. The result showed that the chemical 

space distribution of the external dataset fits 

well with the internal dataset, indicating that 

the applicability domain was well defined for 

the QSAR-based classification model.  
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Figure 4: Heat maps of the MCC values of the training, CV, and test sets for each data sampling 
approach. (A) Balanced undersampling, (B) balanced oversampling, and (C) imbalanced non-class 
weight. Abbreviations: MCC, Matthews correlation coefficient; CV, cross-validation; gaussianNB, 
Gaussian Naive Bayes; LBMC, light gradient boosted machine; MLP, multi-layer perceptron; SVC, C-
support vector; XGB, extreme gradient boosting 
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Figure 5: Heat maps of MCCtrain−MCCCV and MCCtrain−MCCtest for each data sampling approach. (A) 
Balanced undersampling, (B) balanced oversampling, (C) imbalanced non-class weight. Abbreviations: 
MCC, Matthews correlation coefficient; CV, cross-validation; gaussianNB, Gaussian Naive Bayes; 
LBMC, light gradient boosted machine; MLP, multi-layer perceptron; SVC, C-support vector; XGB, ex-
treme gradient boosting 
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Figure 6: Plot of PCA scores for applicability domain analysis. The score plot indicates the distribution 
of chemical space of the internal (green) and external (red) datasets, which were used to determine the 
applicability domain of the PARP-1 inhibitors dataset. 

 

 

 

Mechanistic interpretation of feature  

importance 

To gain a better understanding of the 

mechanisms underlying PARP-1 activity 

and the significance of the features used to 

develop a PARP-1 activity predictability 

model using RF, the mean decrease of the 

Gini index was used to rank the importance 

of the PubChem feature descriptors. Meas-

uring feature importance in RF can be eval-

uated by the mean decrease accuracy and 

the mean decrease in Gini; however, the lat-

ter gives more robust results (Calle and 

Urrea, 2010). Thus, we selected the top 20 

PubChem substructures with the highest 

Gini index, illustrated in Figure 7, and their 

corresponding substructure descriptions are 

shown in Table 2. We grouped the func-

tional groups of the PubChem fingerprints 

into four classes: 1) aromatic, cyclic/heter-

ocyclic, and ring counts; 2) nitrogen-con-

taining, consisting of hydrazine, amine, 

imine, and amide; 3) atom counts; and 4) 

ether, aldehyde, and alcohol. However, 

some PubChem fingerprints had more than 

one feature; for example, PubChemFP695 

had aldehyde and amine functional groups, 

and PubChemFP821 had cyclic and amine 

functional groups.

 

Figure 7: Feature importance plot as rational-
ized by Gini index obtained from random forest 
model using oversampling 
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Table 2: Descriptions of SMARTS patterns and substructures from the top 20 Gini indices 

Rank Features SMARTS pattern Substructure description 

1 PubChemFP300 N-N Hydrazine   

2 PubChemFP2 >= 16 H Greater than or equal to 16 hydrogen at-
oms 

3 PubChemFP358 C(~C)(:N) Ethanamine 

4 PubChemFP576 N=C-C:C-[#1] Propan-1-imine 

5 PubChemFP16 >= 4 N Greater than or equal to 4 nitrogen atoms 

6 PubChemFP12 >= 16 C Greater than or equal to 16 carbon atoms 

7 PubChemFP191 >= 2 unsaturated non-
aromatic heteroatom-
containing ring size 6 

Greater than or equal to 2 unsaturated 
non-aromatic heteroatom-containing ring 
size 6 

8 PubChemFP391 N(~C)(~C)(~C) N,N-dimethylmethanamine   

9 PubChemFP695 O=C-C-C-C-C-N 5-aminopentanal   

10 PubChemFP734 Cc1cc(C)ccc1 1,3-Xylene   

11 PubChemFP540 C-N-C-[#1] N-methylmethanamine 

12 PubChemFP797 CC1CC(C)CCC1 1,3-Dimethylcyclohexane   

13 PubChemFP607 N-C-C-C:C Butan-1-amine 

14 PubChemFP569 N-C-C-N Ethane-1,2-diamine   

15 PubChemFP680 O-C-C-C-C-C Pentan-1-ol   

16 PubChemFP821 CC1C(N)CCCC1 2-Methylcyclohexan-1-amine   

17 PubChemFP594 C-O-C-C=C 3-Methoxyprop-1-ene 

18 PubChemFP611 N-C-C-N-C N'-methylethane-1,2-diamine   

19 PubChemFP646 O=C-N-C-[#1] N-methylformamide 

20 PubChemFP192 >= 3 any ring size 6 Greater than or equal any ring size 6 

 
 

Aromatic, cyclic/heterocyclic, and ring 

count functional groups 

The fingerprints belonging to these 

groups consisted of PubChem191, Pub-

Chem734, PubChem797, PubChem821, and 

PubChem192. PubChem192 was on the low-

est rank of the top 20 and it was not specified 

whether it was aromatic- or heteroatom-con-

taining, but it must have a ring size of six for 

at least three rings. Thus, the aromatic (Pub-

ChemFP734) and cyclic (PubChem191, Pub-

Chem797, and PubChem821) moieties over-

lapped with PubChem192. Based on aro-

matic, cyclic/heterocyclic, and ring counts, 

PubChem191, PubChem797, and Pub-

Chem821 were at the 7th, 12th, and 16th posi-

tions of the top 20. Taking a closer look at our 

post-processing dataset (2018 compounds), 

there were 35 compounds in total containing 

all three fingerprints, of which 34 compounds 

were considered active. Moreover, a total of 

33 compounds contained both cyclic (Pub-

Chem191, PubChem797, and PubChem821) 

and aromatic moieties (PubChemFP734), and 

all of them were active. This meant that aro-

matic and cyclic/heterocyclic functional 

groups with a ring size equal to six or more 

than two were the important features of the 

active compounds. The first generation of 

PARP-1 inhibitors was designed to mimic the 

benzamide scaffold of NAD+ (Steffen et al., 

2013). Later the efficacy was improved by us-

ing quinazolinone as a scaffold to synthesize 

PARP-1 inhibitors (Malyuchenko et al., 

2015). Inhibitors derived from those two scaf-

folds contain both the aromatic and cy-

clic/heterocyclic moieties and play an im-

portant role in the NAD+ binding pocket. The 

aromatic ring forms π-π interactions with the 

tyrosine residues in the NAD+ binding pocket, 

and both the aromatic ring and cyclic/hetero-
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cyclic moieties form hydrophobic interac-

tions with the hydrophobic residues in the 

NAD+ binding pocket. The crystal structure 

of human PARP-1 revealed a hydrophobic in-

teraction between the quinazolinone part of 

the FR257517 inhibitor and the phenyl ring of 

Tyr907 and a CH-π interaction with Cβ of 

Tyr869 (Kinoshita et al., 2004). Moreover, 

docking analysis between PARP-1 and tricy-

clic compounds containing a non-aromatic A-

ring demonstrated the fit within the NAD+ 

binding pocket, even though the non-aromatic 

A-ring was not flat (Park et al., 2010). Most 

of the active compounds reported herein had 

IC50 values ranging from 0.013–0.695 µM. It 

should be noted that PubChem191 was in the 

highest rank among the aromatic, cyclic/het-

erocyclic, and ring counts groups. This could 

be explained by the nitrogen in the non-aro-

matic moiety of the inhibitors contributing to 

hydrogen bonds forming with the glycine in 

the NAD+ binding pocket. The crystal struc-

ture of PARP-1 conjugated with FR257517 

revealed three hydrogen bonds, one from the 

NH of the quinazolinone part of FR257517 to 

Gly863-C=O (Kinoshita et al., 2004). In addi-

tion, cyclic benzamide derivatives increased 

potency in PARP-1 and led to the optimiza-

tion of novel PARP-1 inhibitors. Steinhagen 

and colleagues (2002) reported that core vari-

ations within the cyclohexene moiety of Pub-

Chem191 affected the potency of inhibitors 

(Steinhagen et al., 2002). Moreover, the study 

demonstrated that substitution of the 3,6-di-

hydro-2-thiopyrane subunit yielded a three- to 

tenfold increase in potency compared with the 

cyclohexenyl moiety. 

 

Nitrogen-containing functional groups, in-

cluding hydrazine, amine, imine, and amide 

This class of functional groups possessed 

the largest number of fingerprints, including 

hydrazine (PubChemFP300), amine (Pub-

ChemFP358, PubChemFP391, Pub-

ChemFP695, PubChemFP540, Pub-

ChemFP607, PubChemFP569, Pub-

ChemFP821, and PubChemFP611), amide 

(PubChemFP646), and imine (Pub-

ChemFP576). There were two fingerprints in 

this group, PubChemFP695 and Pub-

ChemFP821, also containing aldehyde and 

cyclic functional groups, respectively. 

PubChemFP300 was in the first rank of 

important fingerprints based on all features. 

This is because PubChemFP300 is part of the 

basic scaffold during PARP-1 inhibitor devel-

opment (Ferraris, 2010). Banasik and col-

leagues (1992) introduced pthalazine deriva-

tives and analogues as part of the develop-

ment of PARP-1 inhibitors (Banasik et al., 

1992). Moreover, Xu and colleagues (2014b) 

synthesized a series of compounds which con-

tained tetraaza phenalen-3-one as a main scaf-

fold to inhibit PARP-1 (Xu et al., 2014b). The 

compounds sensitized tumor cells to ionizing 

radiation and temozolomide. Ji and col-

leagues (2015) used phthalic hydrazide as a 

pharmaceutical scaffold to synthesize novel 

PARP-1 inhibitors (Ji et al., 2015). Another 

study produced novel PARP-1 inhibitors by 

fusing a pyrazolo pyridin-2-one to a non-aro-

matic heterocycle or carbocycle. These re-

sulted in a vast variety of IC50 values, ranging 

from 0.002 to >10 µM (Moree et al., 2008). 

As well as PubChemFP300, another four 

fingerprints were within the top ten important 

features: PubChemFP358 (3rd rank), Pub-

ChemFP576 (4th rank), PubChemFP391 (8th 

rank), and PubChemFP695 (9th rank). Pub-

ChemFP358 is part of the benzamide scaf-

fold, thus making it critical for PARP-1 inhib-

itor synthesis because this scaffold mimics the 

NAD+ substrate. This scaffold has been main-

tained through all generations of PARP-1 syn-

thesis (Malyuchenko et al., 2015). As previ-

ously mentioned, the crystal structures re-

vealed that NH in the quinazolinone scaffold 

of FR257517 forms a hydrogen bond with the 

Gly863-C=O that is required for the inhibitor 

to remain in the NAD+ binding pocket (Ki-

noshita et al., 2004). Moreover, Pub-

ChemFP358 is part of the pendant fluoroben-

zyl group that participates in the adenine–ri-

bose binding pocket within the NAD+ binding 

site (Pescatore et al., 2010). 

PubChemFP576 is part of the pyridine 

and pyrimidine moieties. Moree and col-

leagues (2008) fused a pyrazolo pyridin-2-
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one to a non-aromatic heterocycle or carbocy-

cle to generate novel PARP-1 inhibitors (Mo-

ree et al., 2008). The fused structures were de-

signed based on the observation that pyrazolo 

pyridin-2-one showed a similar binding mode 

between chicken PARP-1 (PDB: 1PAX) and 

the Parke–Davis/Pfizer inhibitor. Ferraris and 

colleagues (2003) synthesized a series of aza-

5[H]-phenanthridine-6-inhibitors where ni-

trogen atoms were introduced to the 5[H]-

phenanthridin-6-one core at different posi-

tions to compare the potency (Ferraris et al., 

2003b). Moreover, this fingerprint was part of 

the tetraaza phenalen-3-one (Xu et al., 

2014b), 4-benzyl-2H-phthalazin-1-one (Me-

near et al., 2008), and 4-[4’-fluoro-3’-(piper-

azine-1’-carbonyl)benzyl]-2H-phthalazin-1-

one cores (Zmuda et al., 2015). Torrisi and 

colleagues (2010) demonstrated that intro-

duction of 3-pyridyl to a hexahydroben-

zonaphthyridinone pharmacophore resulted 

in metabolic stability (Torrisi et al., 2010). 

PubChemFP391 represents the tertiary 

amines that Ferraris and colleagues (2003a) 

added to the partially saturated aza-5[H]-phe-

nanthridine-6-ones to increase aqueous solu-

bility (Ferraris et al., 2003a). Moreover, it is 

part of the optimal nitrogen substituent of the 

hexahydrobenzophthyridinone pharmaco-

phore to synthesize diverse ranges of PARP-

1 inhibitors that was synthesized by Torrisi 

and colleagues (2010). Pescatore and col-

leagues (2010) synthesized a series of pyr-

rolo[1,2-a]pyrazin-1(2H)-one to inhibit 

PARP-1 (Pescatore et al., 2010). Addition-

ally, the same study revealed that the pyr-

rolo[1,2-a]pyrazin-1(2H)-one scaffold exhib-

ited good potency and inhibited BRCA-defi-

cient tumor cells. Rhee and colleagues (2009) 

used isoquinolinone-based tetracycles as the 

main scaffold to develop PARP-1 inhibitors 

(Rhee et al., 2009). Based on this fingerprint, 

some of the compounds from this study ex-

hibited an IC50 lower than 1 µM. Zhou and 

colleagues (2017) made a group of com-

pounds called fused tetra- or penta-cyclic 

compounds, in which one part of the ring had 

a tertiary amine as a spacer to link other sub-

stituents, that showed diverse ranges of enzy-

matic activity (Zhou et al., 2017). 

PubChemFP695 overlapped with both 

PubChemFP358 and PubChemFP191, which 

are important for the NAD+ binding pocket. 

Moreover, PubChemFP695 was part of tricy-

clic derivative PARP-1 inhibitor synthesis 

(Myung-Hwa et al., 2014), and substituents 

participated in the adenine–ribose (AD) bind-

ing site within the NAD+ binding pocket 

(Scarpelli et al., 2010). PubChemFP695 is a 

component of proline derivatives and contrib-

utes to lipophilicity, which is necessary for 

cell permeability (Dunn et al., 2012). This 

was confirmed by introducing the polar car-

boxylic acid moiety to proline derivatives, re-

sulting in less cell-based activity. Moreover, 

PubChemFP695 also overlapped with Pub-

ChemFP391, making this fingerprint part of 

the AD binding site. 

Collectively, this suggests that nitrogen-

containing fingerprints are important in 

model construction. 

 

Ether, aldehyde, and alcohol functional 

groups 

One fingerprint, PubChem695, which 

contained both aldehyde and amine functional 

groups, is categorized in this class and has 

been discussed previously. The remaining fin-

gerprints falling into this class, PubChem680 

(15th rank) and PubChem594 (17th rank), were 

not ranked in the top ten important features. 

Based on our curated dataset (n = 2018), few 

compounds contained these fingerprints: Pub-

Chem680, n = 714 (18th rank); and Pub-

Chem594, n = 468 (18th rank). PubChem680 

is composed of alkane and alcohol functional 

groups and participates in the nicotinamide–

ribose (NI) and AD binding sites within the 

NAD+ binding pocket. The study led by Fer-

raris and colleagues (2003b) replaced the 

C=O of the amide group from the benzamide 

scaffold with C-OH, which resulted in IC50 

values ranging from 14–0.042 µM (Ferraris et 

al., 2003b). This suggests that OH could be 

able to maintain a hydrogen bond within the 
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NAD+ binding pocket. Additionally, this fin-

gerprint served as an o-linked spacer between 

two distinct pharmacophores, one of which 

was responsible for the NI binding site and the 

other for the AD binding site, as demonstrated 

by Park and colleagues (2010) via the synthe-

sis of a series of 1,2-dihydro-4H-thiopy-

rano[3,4-c]quinolin-5(6H)-one derivatives 

(Park et al., 2010). As part of the AD binding 

site, this fingerprint also overlapped with 

PubChemFP695, which contributes to aque-

ous solubility and cellular permeability, as 

previously mentioned. 

PubChemFP594 is part of the pyran and 

was found to play roles in both the NI and AD 

binding sites within the NAD+ binding 

pocket. Several studies have used pyran as 

part of the scaffold. For example, introducing 

a dihydropyran to the A-ring caused the de-

rivatives to be more polar but less potent to-

ward PARP-1 inhibition (Shultz et al., 2013). 

Xu and colleagues (2014a) filed the patent on 

the synthesis of diazabenzo[de]anthracen-3-

one derivatives that contain pyran as part of 

the tri-cyclic ring (Xu et al., 2014a). All the 

compounds reported in this study were cate-

gorized as active compounds. Conversely, the 

patent filed by Cheung and colleagues (2015) 

revealed mostly inactive compounds against 

PARP-1 (Cheung et al., 2015). For the AD 

binding site, this fingerprint participated in 

phenyl derivative substituents, as demon-

strated by Orvieto and colleagues (2009) 

when they introduced methyl groups to the ar-

omatic ether (Orvieto et al., 2009). They 

found that this improved the inhibitory effect 

compared with its parental phenyl. As previ-

ously mentioned, PubChemFP594 also func-

tionally overlapped with PubChem680, as 

part of the o-linked spacer between two bind-

ing modes of pharmacophores. 

 

Structural interpretation 

PARP-1 has three important domains: 1) 

the DNA binding domain, 2) the catalytic do-

main, and 3) the nuclear acceptor protein 

(Ferraris, 2010). The catalytic domain is sub-

divided into: 1) the helical domain (HD), and 

2) the ADP-ribosyl transferase (ART) do-

main, as illustrated in Figure 8 (Patel et al., 

2012). Most of the compounds were synthe-

sized to inhibit the catalytic domain that con-

sists of three subsites: 1) the nicotinamide–ri-

bose binding site (NI), 2) the phosphate bind-

ing site (PH), and 3) the adenine–ribose bind-

ing site (AD), and the inhibitors were de-

signed to mimic the nicotinamide scaffold of 

NAD+ (Kinoshita et al., 2004). Thus, all gen-

erations of PARP-1 inhibitors have main-

tained the basal chemical interaction network 

between the inhibitors and the key amino ac-

ids within the NI binding site (Malyuchenko 

et al., 2015). These key amino acids include 

Gly863 (nitrogen of the α-amine) and Ser904 

(oxygen of the R-group) forming hydrogen 

bonds with either C=O or C-OH of inhibitors. 

The oxygen of the carboxyl group of Gly863 

forms a hydrogen bond with either the nitro-

gen-containing ring of inhibitors or the NH 

group of the nicotinamide scaffold, whereas 

the hydrogen of the amino group of Gly863 

forms a hydrogen bond with either the C=O 

or C-OH of the inhibitors, as illustrated in 

Figure 8. Additionally, π-π and hydrophobic 

interactions between the side chain of Tyr896 

and Tyr907 in PARP-1 and either the cyclic 

or aromatic ring of inhibitors contribute to the 

NI binding site, as shown in Figure 8. These 

interactions were shown by the co-crystalliza-

tion of chicken PARP-1, which is highly con-

served with human PARP-1 (sequence iden-

tity and similarity, 79 % and 89 %, respec-

tively), with three different inhibitors: 6-

amino-benzo[de]isoquinoline-1,3-dione 

(4ANI), 3-methoxybenzamide (3MBA), and 

8-hydroxy-2-methyl-3-hydro-quinazolin-4-

one (NU1025) (Kinoshita et al., 2004; Ruf et 

al., 1998). The importance of the chemical in-

teraction network has been confirmed through 

site-directed mutagenesis on human PARP-1. 

Ruf and colleagues (1998) demonstrated that 

G863A, Y896N, and Y907N reduced PARP-

1 activity to 70 %, 15 % and 1.1 %, respec-

tively, compared with wildtype (Ruf et al., 

1998). 
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Figure 8: Crystal structure of the catalytic domain of PARP-1 (PDB ID 1UK0) and the interaction network between PARP-1 and olaparib (PDB ID 7KK4). The 
alpha-helical subdomain (HD) is shown in light orange color while the ADP-ribosyl transferase subdomain (ART) is shown in wheat color. Hydrogen forming 

network (blue solid line), - (green dashed line), and hydrophobic (grey dashed line) interactions between key amino acids within the nicotinamide binding site 
and olaparib 

 



EXCLI Journal 2023;22:84-107 – ISSN 1611-2156 

Received: November 14, 2022, accepted: December 23, 2022, published: January 05, 2023 

 

 

101 

To improve the potency of PARP-1 inhib-

itors, because the NI binding site is found in 

other NAD+ binding proteins, the develop-

ment of PARP-1 inhibitors was extended to 

use the AD binding site to increase the selec-

tivity of PARP-1 inhibition. In particular, this 

helps to differentiate between PARP-1 and 

PARP-2, which share very high similarity at 

the active site, and double knockout of PARP-

1 and PARP-2 is lethal during embryogenesis 

(Ménissier de Murcia et al., 2003). PARP-2 

knockout in mice also demonstrated a role in 

maintaining the genetic integrity of hemato-

poietic stem/progenitor cells (Farrés et al., 

2013). Cross-reactivity of inhibitors with 

PARP-2 could therefore have significant side-

effects. 

The amino acids making up the AD bind-

ing site include Glu763, Asp766, Asn767, 

Leu769, Asp770, His862, Ser864, Asn868, 

Ile872, Gly876, Ile877, Arg878, and Ala880, 

as defined by several co-crystal structures 

(Kinoshita et al., 2004; Patel et al., 2012, 

2014). Glu763, Asp766, Asn767, and Asp770 

are part of the helical domain which uncoils 

upon DNA-binding activation, thus enabling 

inhibitors to insert into the catalytic pocket 

(van Beek et al., 2021). Ishida and colleagues 

(2006) used structure-based drug design to 

understand the different interactions of inhib-

itors between PARP-1 and PARP-2 (Ishida et 

al., 2006). They discovered that two chemical 

frameworks, quinazolinone and quinoxaline 

derivatives, fit the AD binding site differently 

and inhibit PARP-1 and PARP-2, respec-

tively. Zhao and colleagues (2017) modified 

the spacer and the N-Boc-pyrrolidin-3-yl sub-

unit of a quinazoline-2,4(1H,3H)-dione deriv-

ative to adjust the interaction within both the 

spacer and the AD binding site (Zhao et al., 

2017). Moreover, Zhou and colleagues (2021) 

exploited the unique AD binding site between 

PARP-1 and PARP-2 to generate a series of 

quinazoline-2,4(1H,3H)-dione derivatives 

with a variety of substituted cyclic amines 

(Zhou et al., 2021). They reported that com-

pound 24, which had an (R)-3-ethyl pipera-

zine ring, showed high enzymatic potency 

and selectivity toward PARP-1. This com-

pound also demonstrated an acceptable phar-

macokinetic profile and reduced tumor 

growth in xenograft and orthotopic models of 

breast cancer and glioblastoma, respectively. 

Co-crystallization of PARP-1 with com-

pounds 4 (PDB ligand ID 6WZ) and 6 (PDB 

ligand ID 6X2) demonstrated a favorable hy-

drophobic interaction of either the methyl or 

ethyl substituent on the piperazine ring with 

the key amino acids His862 and Leu877. Ad-

ditionally, the substituents on the piperazine 

nitrogen projected onto a key subpocket con-

sisting of Asp766, Leu769, and Asp770 in 

PARP-1. Leu769 is replaced by Gly338 in 

PARP-2, and so this was used as rational for 

PARP-1 selectivity. Johannes and colleagues 

(2021) attached various aryl piperazines to an 

8-chloroquinazolinone core and found that 

the interactions between 1) the piperazine 

moiety and His862 through water molecules 

and 2) the imidazole moiety and Asp770 via a 

hydrogen bond resulted in selectivity toward 

PARP-1 (Johannes et al., 2021). Yu and col-

leagues (2022) used the key amino acid dif-

ferences between PARP-1 (Gln759, Glu763, 

and Asp766) and PARP-2 (Gln324, Ser328, 

and Gln332) and further modified rucaparib 

to obtain increased selectivity of PARP-1 in-

hibitors (Yu et al., 2022). They discovered 

that Y49 showed excellent selectivity (IC50 of 

PARP-1 and PARP-2, 0.96 nM and 61.90 nM, 

respectively). Molecular docking demon-

strated hydrogen bond formation between the 

amino group of 4-aminopiperidine-1-yl with 

Glu763 and Asp766 in PARP-1, whereas 4-

aminopiperidine-1-yl caused steric hindrance 

in PARP-2. Thus, they suggested that nitro-

gen-containing basic substituents were re-

quired to fit into the hydrophilic pocket 

formed by acidic amino acids around the AD 

site. 

 

Model deployment as web server 

To facilitate accessibility for non-

chemoinformatic scientists who intend to de-

termine whether their compounds have 

PARP-1 inhibitory activity, a public web 

server was created. Thus, the predictive 
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model, PARP1pred, is available at 

https://parp1pred.streamlitapp.com. 

Briefly, the PARP1pred web server uses 

SMILES as the input for the query compound. 

PadelPy is used to convert SMILES to Pub-

Chem fingerprints, which are then used as an 

input to trained classification models whose 

outputs are reported as active or inactive (Fig-

ure 9). 

 

CONCLUSION 

In the era of precision medicine, targeting 

of DNA repair is effective in killing cancer 

cells. PARP-1 plays a role in DNA damage 

and repair, and is a well-known target for can-

cers with BRCA1/2 mutations. Several drugs 

targeting PARP-1 have been FDA approved; 

however, accessing such targeted drugs is 

problematic because of their high cost, partic-

ularly in middle- and low-income countries. 

Thus, advancements in drug development 

would contribute to the alleviation of such ac-

cess constraints. In this study, computer-aided 

drug design was used to understand the rela-

tionship between the chemical structures of 

inhibitors and PARP-1 through the QSAR 

building model. Understanding such relation-

ships will facilitate rational drug design to ef-

fectively target PARP-1. Our study retrieved 

a set of biological activities from the 

ChEMBL database that contained 2018 non-

redundant compounds. A PubChem finger-

print-based random forest classification 

model from an oversampling approach was 

built to predict PARP-1 activity. Gini index 

 
Figure 9: Screenshot of the PARP1pred webserver before (A) and after (B) entering the SMILES in-
put. Notice that after submission of the SMILES notation the corresponding molecular fingerprints are 
computed whereby the trained predictive model is applied to classify the query molecule as active or 
inactive. In this case, the query molecule is classified to be active. 

https://parp1pred.streamlitapp.com/
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calculation revealed the important features in 

the random forest model, which included aro-

matic/cyclic/heterocyclic moieties and nitro-

gen-containing fingerprints, and ether/alde-

hyde/alcohol moieties. Additionally, a de-

tailed examination of the structure–activity 

relationship revealed that hydrophobic inter-

actions and hydrogen bonding networks with 

nitrogen-containing scaffolds are critical for 

developing PARP-1 inhibitors. As a result, 

this insight provides a framework for data-

driven PARP-1 inhibitor design. 
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