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ABSTRACT 

Statistical learning starts at an early age and is intimately linked to brain development and the emergence of indi-

viduality. Through such a long period of statistical learning, the brain updates and constructs statistical models, 

with the model's individuality changing based on the type and degree of stimulation received. However, the de-

tailed mechanisms underlying this process are unknown. This paper argues three main points of statistical learning, 

including 1) cognitive individuality based on "reliability" of prediction, 2) the construction of information “hier-

archy” through chunking, and 3) the acquisition of “1-3Hz rhythm” that is essential for early language and music 

learning. We developed a Hierarchical Bayesian Statistical Learning (HBSL) model that takes into account both 

reliability and hierarchy, mimicking the statistical learning processes of the brain. Using this model, we conducted 

a simulation experiment to visualize the temporal dynamics of perception and production processes through sta-

tistical learning. By modulating the sensitivity to sound stimuli, we simulated three cognitive models with different 

reliability on bottom-up sensory stimuli relative to top-down prior prediction: hypo-sensitive, normal-sensitive, 

and hyper-sensitive models. We suggested that statistical learning plays a crucial role in the acquisition of 1-3 Hz 

rhythm. Moreover, a hyper-sensitive model quickly learned the sensory statistics but became fixated on their in-

ternal model, making it difficult to generate new information, whereas a hypo-sensitive model has lower learning 

efficiency but may be more likely to generate new information. Various individual characteristics may not neces-

sarily confer an overall advantage over others, as there may be a trade-off between learning efficiency and the ease 

of generating new information. This study has the potential to shed light on the heterogeneous nature of statistical 

learning, as well as the paradoxical phenomenon in which individuals with certain cognitive traits that impede 

specific types of perceptual abilities exhibit superior performance in creative contexts.  
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INTRODUCTION 

Understanding cognitive individuality 

and its underlying creativity is crucial for ad-

vancing our understanding of human cogni-

tion. One critical cognitive function that 

contributes to language and music acquisition 

is known as “statistical learning” (Saffran et 

al., 1996). Statistical learning is an innate 

function of the brain that allows individuals to 

learn the underlying structure of sensory input 
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by detecting statistical patterns and regulari-

ties in the environment. 

Recent studies have suggested that indi-

vidual differences in statistical learning is 

linked to various cognitive abilities and devel-

opmental disorders such as autism spectrum 

disorder (ASD) and developmental dyslexia 

(Misyak and Christiansen, 2012; Siegelman 

et al., 2017; Palmer and Mattys, 2016; Obeid 

et al., 2016; for review, see Arciuli, 2017; Saf-

fran, 2018). Despite the potential importance 

of statistical learning in comprehending indi-

vidual cognitive differences and brain devel-

opment, it remains unclear how such differ-

ences in cognitive abilities arise through sta-

tistical learning. 

Here, we review neural and computational 

studies on how cognitive individuality 

emerges through statistical learning in the 

brain. Further, for constructive understand-

ing, we conducted a simulation experiment to 

visualize the temporal dynamics of perception 

and production processes through statistical 

learning in different cognitive models. We 

utilized three models that have varying levels 

of sensitivity to sound stimuli: hypo-sensi-

tive, normal-sensitive, and hyper-sensitive 

models. Considering that statistical learning 

is fundamental to brain development, we also 

discuss how typical versus atypical brain de-

velopment influences the perception and pro-

duction of information through statistical 

learning.  

 
STATISTICAL LEARNING AND ITS 

PREDICTIVE PROCESSING 

Auditory prediction and its individuality 

Recently, a growing body of studies has 

tried to explain the neural and computational 

mechanisms of learning and generation of au-

ditory structured information (such as music 

and language) based on the general principle 

of predictive processing in the brain (Vuust et 

al., 2022). Predictive processing in the brain 

works to minimize the prediction error be-

tween the bottom-up sensory signals of sound 

stimuli from the external environment and the 

top-down predictive signals based on internal 

models (Friston, 2010, 2017; Clark, 2013). 

The "reliability" of the prior probability of 

top-down predictions is controlled by percep-

tual uncertainty. The brain learns to adapt 

continuously to the uncertain environment by 

reducing perceptual uncertainty and predic-

tion errors.  

Researchers have attempted to understand 

cognitive individuality from the perspective 

of predictive processing in the brain. For ex-

ample, it has been explained by the depend-

ence on top-down predictions based on the 

prior probability of internal models (hypo-

/hyper-prior) and the dependence on bottom-

up sensory signals from the external environ-

ment (hypo-/hyper-sensitive) (Pellicano and 

Burr, 2012; Philippsen et al., 2022). Intuiti-

vely, hyper-prior/hypo-sensitive individuals 

can be characterized as those with strong 

judgments based on past experiences and 

hypo-prior/hyper-sensitive as those who 

adapt quickly to new environments. Recent 

studies have suggested that such distinct de-

pendence on prior prediction reflects the dy-

namics of brain development (Philippsen and 

Nagai, 2019; Philippsen et al., 2022). Neuro-

typical children tend to exhibit unstable de-

pendence on prior predictions, but over time, 

they develop the ability to effectively com-

bine sensory information with prior predic-

tions. This enhances their resilience to disrup-

tions in an uncertain environment. On the 

other hand, individuals with ASD may exhibit 

distinct patterns of development in predictive 

processing (see Table 1). That is, they tend to 

exhibit stronger dependence or reliance on 

prior predictions in certain situations (hyper-

prior) (Philippsen and Nagai, 2019), while in 

other circumstances, they may exhibit a 

weaker dependence or reliance on prior pre-

dictions (hypo-prior) or stronger reliance on 

sensory input (hyper-sensitive) (Sinha et al., 

2014; Thye et al., 2018; Robertson and 

Baron-Cohen, 2017). Thus, they tend to ex-

hibit variability in their reliance on prior pre-

dictions, rather than a consistent pattern of ei-

ther enhancement or decrease. 
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Table 1: Individual differences of prediction/sensitivity to external stimuli 

Types Individuality References 

Hypo-prior Autism spectrum disorder Pellicano and Burr, 2012 

 Child Philippsen et al., 2022 

Hyper-prior Child Philippsen et al., 2022 

Hypo-sensitivity Synaesthesia Ward et al., 2017 

 Attention Deficit Hyperactivity Disorder Panagiotidi et al., 2018 

  Bijlenga et al., 2017 

 Affective disorders Engel-Yeger et al., 2016 

Hyper-sensitivity Autism spectrum disorder Van de Cruys et al., 2019 

  Ward et al., 2017 

 Synesthesia Ward et al., 2017 

 Attention Deficit Hyperactivity Disorder Panagiotidi et al., 2018 

  Bijlenga et al., 2017 

 Affective disorders Engel-Yeger et al., 2016 

  Nathan et al., 1999 

 Bipolar disorder Lewy et al., 1985 

  Hallam et al., 2009 

  Lam et al., 1990 

 

 
Statistical learning of structured sequence 

The statistical learning is an essential cog-

nitive function that is closely linked to brain 

development (Saffran, 2018) and important 

for understanding individual differences in 

the perception and production of music and 

language within the framework of the predic-

tive processing. The basic mechanism in-

volves calculating the statistical probability of 

environmental information (particularly the 

transition probability of sequential infor-

mation) and the uncertainty of probability dis-

tribution, and predicting future information 

based on an internal probabilistic model ac-

quired through statistical learning. The transi-

tion probability is a conditional probability of 

an event en+1, given the preceding n events 

based on Bayes’ theorem: P(en+1|en), while 

the uncertainty is often calculated using sev-

eral ways of information-theoretical entropy 

such as conditional entropy: 

 −ΣP(xi)ΣP(xi+1|xi)log2P(xi+1|xi) (1) 

From the psychological standpoint, the 

formula can be construed as positing that the 

brain expects a forthcoming event en+1 based 

on the most recent preceding events en in a 

given sequence.  

The prediction strategy and resulting im-

pression can vary depending on uncertainty, 

even when the transition probabilities are 

identical. For example, a recent neural study 

has revealed that the brain strategically alters 

the “order” of transition probabilities, that is, 

the length of the preceding n events used as a 

reference for expectation, based on the uncer-

tainty of sequential information (Daikoku and 

Yumoto, 2023). Another evidence also 

showed the preference for music stimuli can 

be understood as a prediction process. That is, 

it is represented by precision-weighted in-

verted U curves of the product of the transi-

tion probability and uncertainty (Vuust et al., 

2012; Vuust and Witek, 2014; Koelsch et al., 

2019; Cheung et al., 2019; Gold et al., 2019). 

Thus, the prediction strategy (order of transi-

tion probability) and individual preference is 

formed by the integration of uncertainty into 

probability based on individual’s internal 

model.   

Such uncertainty is not universally inher-

ent in music of language per se. Rather, it is 

“perceptual” uncertainty that is shaped by an 

individual’s auditory experience. For exam-

ple, in the case of language, when a native 

speaker hears a particular word, the uncer-

tainty in predicting the probable subsequent 

words is low, making prediction easier. 
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Conversely, for non-native speakers, predict-

ing the next word is more difficult due to 

higher uncertainty. This is a result of individ-

uals constantly updating their internal models 

through extended periods of statistical learn-

ing, thereby generating an appropriate lan-

guage probability model. Neural and behav-

ioral studies have highlighted the impact of 

individual’s auditory experience and exper-

tise on the statistical learning abilities (Dai-

koku and Yumoto, 2020), which can lead to 

familiarity with specific types of music or 

genres (Vuust et al., 2012). Furthermore, in 

addition to perception and learning, past ex-

periences with statistical learning play a cru-

cial role in the development of individual 

traits related to music production (composi-

tion) and creativity (Daikoku and Yumoto, 

2020). 

 

Brain’s statistical learning is Bayesian in-

ference but not maximum likelihood  

estimation 

Importantly, auditory experience affects 

not only perceptual uncertainty, but also the 

"reliability" of probabilities. For instance, an 

A-to-B transition which occurs in (1) 9 out of 

10 trials and in (2) 90 out of 100 trials both 

have a transition probability of 90 %. How-

ever, the degree of reliability is higher in the 

former case than the latter. Such reliability is 

useful for the brain to make judgments even 

for events with low transition probability. 

Comparing an event that occurs in 10 out of 

100 trials with an event that occurs in 1 out of 

10, the brain will recognize that the former is 

reliably unpredictable and confidently uses 

this information to make predictions. 

Neurophysiological studies have ob-

served a gradual representation of statistical 

learning effects as the number of learning rep-

etitions increases (Daikoku et al., 2015), indi-

cating that the brain's statistical learning is 

based on Bayesian inference, which gradually 

improves the reliability of probabilities with 

increasing experience rather than on maxi-

mum likelihood estimation, which does not 

vary with learning repetitions. Thus, the 

amount of learning (auditory experience) not 

only changes the uncertainty of the brain's in-

ternal model but also the reliability of proba-

bilities, which can affect cognitive individu-

ality and the way of predictions. 

However, most studies of statistical learn-

ing have referred maximum likelihood esti-

mation based on Markov models or n-gram 

models that do not consider the "reliability" of 

probabilities, and thus, have not taken into ac-

count the effect of learning trial. Therefore, 

this study developed a novel model, referred 

to as a “Hierarchical Bayesian Statistical 

Learning (HBSL)” model incorporating the 

Bayesian reliability of probabilities into a 

Markov model. We then used this model to 

examine the learning process when a specific 

auditory stimulus sequence is repetitively 

learned. 

It is of note that the reliability of probabil-

ities is not only subject to the amount of learn-

ing (experience), but also to prediction biases. 

As mentioned above (section Auditory pre-

diction and its individuality), cognitive indi-

viduality can be characterized as those with 

strong or weak dependence or reliance on the 

prior probability of internal models, referred 

to as hyper-prior or hypo-prior, respectively, 

and those with strong or weak dependence on 

the auditory inputs, referred to as hyper-sen-

sitive or hypo-sensitive, respectively (Pelli-

cano et al., 2012; Philippsen et al., 2022). 

Thus, the reliability of prediction can also 

vary depending on the way of prediction as 

well as auditory experience. In summary, cog-

nitive individuality is associated with a mix-

ture of "dependency on prior prediction (or 

sensory signal)" and "amount of statistical 

learning". 

 

Hierarchy of syntactic and rhythm  

structure, and phase entrainment 

Statistical learning has basically been de-

rived from a hypothesis that explains the 

mechanism of chunking, which detects infor-

mation units with high transition probabilities 

from sequential information such as words or 

phrases (Saffran et al., 1996). Therefore, 

many previous studies have examined the 

neural and computational mechanisms of 
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chunking through statistical learning. On the 

other hand, recent studies have proposed two 

types of “hierarchical” statistical learning 

systems (Altman, 2017; Daikoku et al., 2021). 

The first is a system based on the fundamental 

function of statistical learning, which groups 

the chunks of information that have high tran-

sition probabilities and integrate them into a 

cohesive unit. The second is a system that ar-

ranges various chunked units to create a hier-

archical syntactic structure (Figure 1). That is, 

statistical learning plays a crucial role in the 

acquisition of the hierarchy, which is an es-

sential and unique feature of language and 

music (Patel, 2003). 

Particularly, the hierarchical structure of 

auditory rhythms has been considered im-

portant for the acquisition of music and lan-

guage (Goswami, 2017). The hierarchy of 

rhythms refers to a structure in which the 

lower-level rhythms, such as those corre-

sponding to syllables and musical notes (e.g., 

crotchet) around 4-12 Hz, are included in the 

higher-level rhythms around 1-3 Hz, which 

correspond to prosody, intonation, and long 

musical note such as minim (Daikoku et al., 

2022). Furthermore, there are rhythms around 

12-30 Hz that correspond to phonemes or 

sound onsets at even lower levels of the hier-

archy. This can be visualized by analyzing the 

amplitude modulation (AM) envelope of 

sound waveforms (Figure 2).  

It is known that human auditory percep-

tion relies in part on phase entrainment of the 

AM rhythm patterns in sounds at different 

timescales simultaneously. Such a phase en-

trainment (also described as phase alignment, 

neural coupling, tracking, and synchroniza-

tion) has been shown to contribute to parsing 

of the sound signal into units such as syllables 

and words (Poeppel, 2003).  

A recent study has shown that the acquisi-

tion of the slower rhythm (1-3 Hz), that is, 

phase entrainment of 1-3Hz rhythm (Attaheri 

et al., 2022) is particularly important for early 

learning and development of language and 

music. Notably evidence has also shown that 

the ability of 1-3 Hz phase entrainment is as-

sociated with statistical learning capacity (As-

saneo et al., 2019), and neural oscillations 

synchronize with the statistical chunks ac-

quired via statistical learning (Batterink 

and  Paller, 2017).  

However, brain development can interfere 

with this function of phase entrainment 

through statistical learning (Smalle et al., 

2022). Individuals with developmental disor-

ders such as Autism Spectrum Disorder 

(ASD) and developmental dyslexia, which is 

characterized by difficulties in reading, 

spelling, and impaired phonological pro-

cessing (Ramus et al., 2003; Vellutino et al., 

2004), exhibit decay of statistical learning and 

rhythm processing (Arciuli, 2017; Saffran, 

2018; Goswami, 2019). Therefore, statistical 

learning plays a critical role in brain develop-

ment and the emergence of cognitive individ-

uality. Over a prolonged period of statistical 

learning, the brain updates and constructs sta-

tistical models, with the model's individuality 

changing based on the type and degree of 

stimulation received. However, the detailed 

mechanisms underlying this process remain 

unknown. 

To provide a constructive understanding 

of the potential relationships between statisti-

cal learning and 1-3Hz rhythm acquisitions, 

in the next section, we conduct a simulation 

experiment to visualize the temporal dynam-

ics of perception and production processes 

through statistical learning, using a newly de-

vised model referred to as the HBSL model 

with different dependence or reliability on 

bottom-up sensory stimuli relative to top-

down prior prediction: hypo-sensitive, nor-

mal-sensitive, and hyper-sensitive models 

that takes into account both reliability and hi-

erarchy, mimicking the statistical learning 

processes of the brains with different cogni-

tive individuality. Then, we discuss how atyp-

ical cognitive development and individuality 

(i.e., hypo- and hyper-sensitive) influence the 

perception and production through statistical 

learning.



EXCLI Journal 2023;22:828-846 – ISSN 1611-2156 

Received: April 27, 2023, accepted: August 02, 2023, published: August 04, 2023 

 

 

833 

 
Figure 1: An example of hierarchical statistical learning of music. Reprinted from Daikoku et al. (2021). 
Misty by Errol Garner, composed in 1954 but arranged by the authors to simplify. The arrangement, 
chord names, and symbols are simplified (just major/minor, flat, and 7th note) to account for the two-
five-one (II–V(7)–I) progression. For example, jazz music has general regularities in chord sequences 
such as the so-called “two-five-one (II–V–I) progression.” It is a succession of chords whose roots de-
scend in fifths from the supertonic (II) to dominant (V), and finally to the tonic (I). Such syntactic pro-
gression frequently occurs in music, and therefore, the statistics of the sequential information have high 
transitional probability and low uncertainty. Thus, once a person has learned the statistical characteris-
tics, it can be chunked as a commonly used unit among improvisers. In contrast, the ways of combining 
the chunked units are different between musicians. 
 

 
Figure 2: An example of rhythm hierarchy with a scalogram. Reprinted from the paper by Daikoku and 
Goswami (2022). Both language and music consist of hierarchical rhythmic structures that include 
rhythms around 2 Hz, as compared to other auditory stimuli.  
 
 

SIMULATION 

Hierarchical Bayesian statistical learning 

model 

This study developed a computational 

model, which simulates statistical learning 

processes of the brain, referred to as HSBL 

model (Daikoku and Nagai, 2022; Daikoku et 

al., 2021) (Figure 1). The scripts of the model 

have been deposited to an external source 

(https://osf.io/zjwxe/?view_only=4a2f14edd

00c4ca391d8befe2e646c73). This is a model 

that integrates Bayesian estimation with Mar-

kov processes using a Dirichlet distribution as 

https://osf.io/zjwxe/?view_only=4a2f14edd00c4ca391d8befe2e646c73
https://osf.io/zjwxe/?view_only=4a2f14edd00c4ca391d8befe2e646c73
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a prior distribution. This model can not only 

calculate the transition probabilities but also 

determine the "reliability of probabilities" 

from the inverse of the variance of the prior 

distribution of the transition probabilities. Us-

ing the normalized values of transition proba-

bilities and reliability, this model chunks tran-

sition patterns when the product of "reliability 

* probability" is greater than a constant c. The 

constant can be decided based on the sample 

length and the number of learning trial. In this 

study, we defined c=5 given the sample length 

used in this experiment. In this study, three 

models (hypo-, normal-, and hyper-sensitive) 

with different degrees of dependence on sen-

sory signals were generated by manipulating 

the parameter vector of the Dirichlet distribu-

tion.  

 

Hypo-sensitive: α = (α_1*0.25, ..., α_K*0.25) 

Normal-sensitive: α = (α_1*1, ..., α_K*1) 

Hyper-sensitive: α = (α_1*4, ..., α_K*4)  (2) 

 

where each α_i corresponds to the prior 

probability of category i. Specifically, for K 

categories, α is a K-dimensional vector of 

positive real numbers. Although the degree of 

updating transition probabilities remains con-

stant among the three models, differences 

emerge in terms of the changes in the reliabil-

ity of transition probability. In the hyper-sen-

sitive model, the reliability of probabilities 

(variance of prior distribution) varies easily 

depending on the sensory input, while in the 

hypo-sensitive model, the reliability of prob-

abilities is less likely to vary even when a new 

input is provided (eight times weaker than hy-

per-sensitive model). The normal-sensitive 

model is an intermediate model between the 

hyper- and hypo-sensitive models in terms of 

sensitivity to sensory input. 

 

Learning and production processes 

We generated fifteen different models by 

manipulating the degree of dependence on 

sensory signals and the amount of learning. 

We used the MIDI data of the Japanese chil-

dren's song "Yuuyake Koyake" as the training 

data, and repeated the learning of the song one 

to five times using each of the three models 

(hypo-, normal-, and hyper-sensitive). As a 

result, a total of fifteen models were generated, 

consisting of three degrees of dependence on 

sensory signals and five amounts of learning. 

We investigate how each of the hypo-, nor-

mal-, and hyper-sensitive model transforms 

the internal model over five trials of learning. 

Furthermore, using the probability distribu-

tion of these fifteen models, a hundred pieces 

of music were probabilistically generated for 

each model through an automatic composi-

tion process (Daikoku and Nagai, 2022). 

 

Comparison of internal representations in 

the model 

We compared the total Bayesian surprise 

(or total prediction errors) that occurred dur-

ing learning, measured by the Kullback-

Leibler divergence between a distribution 

P(x) before learning an event (en) and a distri-

bution Q(x) after learning the event (en+1), as 

well as the total number of chunks generated 

during 5 trials of statistical learning. The 

Kullback-Leibler divergence has often been 

used to measure prediction error or Bayesian 

surprise in the framework of predictive pro-

cessing of the brain (Friston, 2010; Baldi and 

Itti, 2010; Itti and Baldi, 2009). It is a metric 

used to measure the similarity between two 

different probability distributions. It repre-

sents how much information is lost when one 

probability distribution changes into another, 

and since it is non-negative, a small value in-

dicates that the two distributions are similar. 

Specifically, it is calculated by taking the dif-

ference between the probability density func-

tions of the two distributions, taking the loga-

rithm at each point, and then computing the 

weighted average with respect to one of the 

distributions. The Kullback-Leibler diver-

gence between two probability distributions 

P(x) and Q(x) is calculated using the follow-

ing formula: 

 

DKL(P||Q) = ΣP(i) log (P(i)/Q(i)) (3) 

 

Here, P(i) and Q(i) represent the probabil-

ities of selecting the value i according to the 
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probability distributions P and Q, respectively. 

In addition, we calculated the average proba-

bility distribution of the 100 songs generated 

by each model and compared the similarity of 

the models to the training data (i.e., original 

data) using t-distributed stochastic neighbor 

embedding (tSNE). 

 

Comparison of acoustic properties of 

rhythm 

We converted the MIDI data of the 100 

songs generated by each model into WAV 

format and extracted the rhythm waveform 

(modulation wave) below 15 Hz using the 

Bayesian probabilistic amplitude modulation 

model (PAD, (Turner and Sahani, 2011)). The 

acoustic signals were first normalized based 

on the z-score (mean = 0, SD = 1) in case the 

sound intensity influenced the spectrotem-

poral modulation feature. The spectrotem-

poral modulation of the signals was analyzed 

using PAD to derive the dominant AM pat-

terns. Music and speech signals can be de-

composed into slow-varying AM patterns and 

rapidly-varying carrier or frequency modula-

tion (FM) patterns (Elliott and Theunissen, 

2009; Turner, 2010; Daikoku et al., 2022). 

AM patterns are responsible for fluctuations 

in sound intensity, which are considered to be 

a primary acoustic feature of perceived hier-

archical rhythm. On the other hand, FM pat-

terns reflect fluctuations in spectral frequency 

and noise. AM envelopes of speech signals 

can be separated from the FM structure by 

means of amplitude demodulation processes. 

The PAD model employs Bayesian inference 

to infer the modulators and carrier, and to 

identify the envelope that best fits the data and 

a priori assumptions. More specifically, am-

plitude demodulation is the process by which 

a signal (yt) is decomposed into a slowly var-

ying modulator (mt) and a rapidly varying 

carrier (ct): 

 

yt = mt * ct  (4) 

 

PAD employs amplitude demodulation as 

a process of both learning and inference. 

Learning involves the estimation of 

parameters that describe distributional con-

straints, such as the expected timescale of var-

iation of the modulator. Inference involves es-

timating the modulator and carrier from the 

signals based on learned or manually defined 

parametric distributional constraints. This in-

formation is probabilistically encoded in the 

likelihood function P(y1:T|c1:T, m1:T, θ), the 

prior distribution over the carrier p(c1:T|θ), 

and the prior distribution over the modulators: 

p(m1:T|θ). Here, the notation x1:T represents all 

the samples of the signal x, ranging from 1 to 

a maximum value T. Each of these distribu-

tions depends on a set of parameters θ, which 

control factors such as the typical timescale of 

variation of the modulator or the frequency 

content of the carrier. In more detail, the par-

ametrized joint probability of the signal, car-

rier, and modulator is:  

 

P(y1:T, c1:T, m1:T|θ) = P(y1:T|c1:T;m1:T, θ) * 
p(c1:T|θ) * p(m1:T|θ)  (5) 

 
Bayes’ theorem is applied for inference, 

forming the posterior distribution over the 

modulators and carriers, given the signal: 

 

P(c1:T, m1:T|y1:T, θ) = P(y1:T, c1:T, 

m1:T|θ) / P(y1:T|θ) (6) 

 

The full solution to PAD is a distribution 

over the possible pairs of modulators and car-

riers. The most probable pair of modulator 

and carrier given the signal is returned: 

 

m*1:T, c*1:T=argmax P(c1:T, 

m1:T|y1:T, θ)  (7) 

 

PAD utilizes Bayesian inference to esti-

mate the most suitable modulator (i.e., enve-

lope) and carrier that best align with the data 

and a priori assumptions. The resulting solu-

tion takes the form of a probability distribu-

tion, which describes the likelihood of a spe-

cific setting of modulator and carrier given 

the observed signal. Thus, PAD summarizes 

the posterior distribution by returning the spe-

cific envelope and carrier with the highest 
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posterior probability, thereby providing the 

best fit to the data. 

PAD can be run recursively using differ-

ent demodulation parameters each time, pro-

ducing a cascade of amplitude modulators at 

different oscillatory rates to form an AM. The 

positive slow envelope is modeled by apply-

ing an exponential nonlinear function to a sta-

tionary Gaussian process, resulting in a posi-

tive-valued envelope with a constant mean 

over time. The degree of correlation between 

points in the envelope can be constrained by 

the timescale parameters of variation of the 

modulator (i.e., envelope), which can either 

be manually entered or learned from the data. 

In the present study, we manually entered 

the PAD parameters to produce the modula-

tors at an oscillatory band level (i.e., <10 Hz) 

isolated from a carrier at a higher frequency 

rate (>10 Hz). The carrier reflects compo-

nents, including noise and pitches, for which 

the frequencies are much higher than those of 

the core modulation bands. In each sample, 

the modulators (envelopes) were converted 

into time-frequency domains using scalogram 

(Figure 2). The scalograms depict the AM en-

velopes derived by recursive application of 

probabilistic amplitude demodulation. We 

then calculated the average frequency power 

at each frequency and further averaged it over 

the 100 songs generated by each model. 

 

REPRESENTATION OF INDIVIDUAL 

DIFFERENCE 

Learning process 
This study suggests that the Hypo-sensi-

tive model had the  highest total Bayesian sur-

prise or total prediction error (i.e., Kullback-

Liebler divergence) during learning, followed 

by Normal-sensitive model and Hyper-sensi-

tive model (Figure 3, left). Furthermore, the 

Normal-sensitive and Hyper-sensitive models 

showed a gradual decrease in Bayesian sur-

prise and an increase in chunking through the 

trial of learning, whereas the Hypo-sensitive 

model showed no decrease in Bayesian sur-

prise or increase in chunking (Figure 3).

 

 

Figure 3: Statistical learning effects in each trial of learning. The left is the total Bayesian surprise (or 
prediction error) in learning a piece of music, and the right is the number of chunks after statistical 
learning. Blue, black, and red represent the hypo-, normal-, hyper-sensitive models, respectively.
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Production process 

In terms of acoustic features of composed 

music after learning, both the Hyper-sensitive 

model and Normal-sensitive model showed a 

gradual increase in the 2 Hz rhythm, which 

corresponds to short phrases that are consid-

ered important in the initial learning of audi-

tory sequences (such as music or language) 

(Figure 5). On the other hand, rhythms corre-

sponding to notes or beats in the 3-5 Hz range 

gradually decreased with learning. In contrast, 

the Hypo-sensitive model showed a gradual 

decrease in the 2 Hz rhythm and a gradual in-

crease in the 3-5 Hz rhythm with learning. 

Regarding probability distribution, the 

tSNE analysis showed that the similarity of 

the probability distribution of the composed 

music to the original music was highest for 

the Hyper-sensitive model, followed by the 

Normal-sensitivity model and the Hypo-sen-

sitive model, in that order (Figure 4). 

 

Figure 4: Acoustic properties of composed music after each trial of Statistical learning. Blue, black, and 
red represent the hypo-, normal-, hyper-sensitive models, respectively. 
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DISCUSSION 

Emergence of individuality through  

statistical learning 

Statistical learning is a fundamental pro-

cess for brain development and contributes to 

forming individual difference of perception 

and production (Siegelman et al., 2017; Dai-

koku and Yumoto, 2020; Daikoku, 2018). 

Computational studies allow for the modeling 

of the brain's developmental processes and 

the emergence of individuality in predictive 

functions underlying statistical learning. In 

this study, we used a model that mimics 

brain’s statistical learning processes includ-

ing hierarchically structured building to in-

vestigate how auditory cognitive individual-

ity arises from statistical learning. Specifi-

cally, we conducted a simulation experiment 

to examine the contributions of two factors to 

auditory cognitive individuality: 1) sensitivity 

to sensory signals (hypo-, normal-, hyper-sen-

sitive) and 2) amount of statistical learning 

(number of learning trials). Our results 

showed that various auditory cognitive indi-

vidualities can arise depending on differences 

in both of sensitivity to sensory signals and 

amount of statistical learning. 

In particular, the normal- and hyper-sen-

sitive models gradually reduced Bayesian sur-

prise, increased the number of chunks (Figure 

3), and generated 1-3 Hz rhythm (Figure 4) 

through learning. Moreover, the effects were 

more pronounced and earlier in the hyper-sen-

sitive model than in the normal-sensitive 

model. In contrast, in the hypo-sensitive 

model, neither the reduction of Bayesian sur-

prise nor the chunking occurred through 

learning. In sum, the simulation experiment 

showed that the learning efficiency was high-

est for the hyper model, lowest for the hypo 

model, and intermediate for the normal model. 

Due to its high sensitivity to sensory signals, 

the hyper-sensitive model may exhibit greater 

adaptability to external input information, po-

tentially resulting in faster learning rates for 

external sensory statistics. 

On the other hand, the hypo-sensitive 

model produced music with statistically dif-

ferent characteristics from those of the 

training data (i.e., original music), compared 

to the other models (Figure 5). That is, the sta-

tistical similarity between the generated mu-

sic and the original music was highest for the 

hyper-sensitive model and lowest for the 

hypo-sensitive model. This suggests that the 

hypo-sensitive model, which showed poor 

learning efficiency for external information, 

may have difficulty in statistical learning and 

chunking, but may be more likely to generate 

new information. In contrast, the hyper-sensi-

tive model, which can efficiently learn statis-

tical regularities of external information, may 

have difficulty in generating new information. 

This suggests that different levels of depend-

ence or reliance on sensory signals lead to dif-

ferences in the internal model even for the 

same learning stimuli (Figure 6), and that 

these differences also influence performance 

in creative contexts. 

 

Figure 6: Graphical representation of the normal 
model, hypo- and hyper-sensitive models.  
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From statistical learning to rhythm  

acquisition 

This study demonstrated that statistical 

learning contributes to the acquisition of 

rhythms around 1-3 Hz (Figure 5). Further-

more, while the rhythms around 1-3 Hz grad-

ually increased in hyper-sensitive and nor-

mal-sensitive models, they gradually de-

creased in hypo-sensitive. Previous studies 

have shown that individuals with ASD, who 

also tend to exhibit hypo-sensitivity, produce 

speech with weak prosody and monotone in-

tonation, which corresponds to a core 1-3Hz 

phase component in speech rhythm hierarchy 

(Kanner, 1943). In addition, a previous study 

that examined the speech rhythm of individu-

als with ASD using the PAD model employed 

in this study revealed a decrease in power 

around the 1-3 Hz frequency range corre-

sponding to the rhythm of prosody and into-

nation (Daikoku et al., 2022). Taken together 

with the results of this study, it is possible to 

say that individuals with hypo-sensitivity may 

have difficulty acquiring rhythms around 

2 Hz.  

A recent study has shown that the neural 

processing of the slower rhythm, that is, os-

cillatory phase entrainment of 1-3 Hz rhythm 

(Attaheri et al., 2022) is particularly important 

for early learning and development in lan-

guage. Notably, evidence has also shown that 

the ability of 1-3 Hz phase entrainment is as-

sociated with statistical learning capacity (As-

saneo et al., 2019), and neural oscillations 

synchronize with the statistical chunks ac-

quired via statistical learning (Batterink and 

Paller, 2017). However, brain development 

interfered with this function of phase entrain-

ment in statistical learning (Smalle et al., 

2022). Individuals with ASD and develop-

mental dyslexia exhibit decay of statistical 

learning as well as rhythm processing (Arciuli, 

2017; Saffran, 2018; Goswami, 2019). There-

fore, statistical learning may play a critical 

role in acquisition and development of 1-3 Hz 

rhythm.  

As stated in the Introduction section, two 

types of “hierarchical” statistical learning 

systems have been proposed (Altman, 2017; 

Daikoku et al., 2021). The first is to chunk se-

ries of “local” information that have high 

transition probabilities. The second is to ar-

range these chunked units to create a “global” 

hierarchical syntactic structure (Figure 1). In 

our study, the first function corresponds to the 

acquisition of 3-5 Hz rhythm while the sec-

ond is the acquisition of 1-3 Hz rhythm (Fig-

ure 2). According to previous studies, individ-

uals with ASD exhibit inconsistent responses 

to local deviants (information that induces 

prediction error). For example, in studies of 

ASD and mismatch negativity (MMN, an 

event-related response component in an EEG 

signal that occurs in response to deviant sig-

nals), some studies demonstrated weaker 

MMN in individuals with ASD than in typi-

cally-developed individuals (Seri et al., 1999; 

Abdeltawwab and Baz, 2014; Bonnet-

Brilhault et al., 2016), while other studies de-

tected larger MMN responses in ASD (Gomot 

et al., 2002, 2011; Ferri et al., 2003; Lepistö 

et al., 2005; Green et al., 2020). These find-

ings suggest that individuals with ASD may 

exhibit either hypo-sensitivity or hyper-sensi-

tivity to local sensory properties. However, 

studies on global predictive processing (e.g., 

hierarchical structure building) have consist-

ently reported that individuals with ASD ex-

hibit weak response to global deviants (see 

Figure 1) (Goris et al., 2018). This implies 

that ASD is hypo-sensitive to non-local statis-

tics, while sensitivity to local events depends 

on the type of stimuli (Ide et al., 2017), repre-

senting either hypo- or hyper-sensitivity to lo-

cal statistics. 

 

Balance of reliance on prior prediction and 

its development 

Past studies suggest that as the brain de-

velops, neurotypical individuals transition 

from relying heavily on sensory input statis-

tics while giving less weight to prior predic-

tions (known as hypo-prior or hyper-sensi-

tive) to properly integrating sensory statistics 

with prior predictions (Philippsen and Nagai, 

2019). This helps individuals to become more 

resilient in uncertain environments. However, 

developmental disabilities, such as ASD, may 
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result in different neural mechanisms under-

lying prior prediction (Nagai, 2019; Lanillos 

et al., 2020). Studies suggest that individuals 

with ASD have hyper-plasticity in short-term 

statistical learning, leading to a preference for 

recent sensory statistics over global (i.e., 

long-term) statistical structures (Sinha et al., 

2014; Saffran, 2018). This means that individ-

uals with ASD may heavily rely on sensory 

input while giving less weight to prior predic-

tion (i.e., hypo-prior or hyper-sensitive) dur-

ing statistical learning. It is worth noting that 

there may be contrasting abnormalities in pre-

dictive function in ASD, with a stronger reli-

ance on prior predictions (i.e., hyper-prior) 

(Philippsen and Nagai, 2019) instead of hypo-

prior predictions (Pellicano and Burr, 2012). 

Thus, the abnormality of prior prediction in 

ASD and other developmental disorders may 

be characterized by instability or variability 

rather than either enhancement or decay in re-

liance on prior prediction (for summary, see 

Table 1). 

Several studies have also indicated that 

children with developmental language disor-

ders, including developmental dyslexia, 

which is defined by difficulties in reading, 

spelling, and impaired phonological proces-

sing (Ramus et al., 2003; Vellutino et al., 

2004), demonstrate a diminished capacity for 

statistical learning (Daikoku et al., 2023). 

This suggests that developmental dyslexia 

may exhibit language impairment resulting 

from difficulties in detecting and utilizing the 

statistical regularities of language, leading to 

a potential hypo-sensitive characterization. 

Nevertheless, as noted in the features of ASD, 

they may also display normal predictive pro-

cessing or hyper-sensitivity to other sensory 

signals such as music and somatosensory sig-

nals. The possibility of varying prediction 

processing depending on the type of stimulus 

could be a critical key for future research. 

Such instability of reliance on prior pre-

diction could also influence the precision of 

perceptual uncertainty, as the precision is es-

timated by the inverse variance of any sensory 

input (i.e., prior distribution) (Koelsch et al., 

2019). Studies have indicated that ASD is 

susceptible to perceptual uncertainty (Boulter 

et al., 2014; Lawson et al., 2014; Van de 

Cruys et al., 2014). The inability to tolerate 

uncertainty can be considered a key marker of 

generalized anxiety disorder (Freeston et al., 

1994). This trait may also be related to the 

heightened anxiety commonly observed in 

people with ASD and could have a negative 

effect on their creativity (Baas et al., 2008). It 

has been suggested that individuals with ASD 

may experience increased anxiety levels 

when the level of uncertainty in their environ-

ment is high (Boulter et al., 2014). In other 

words, the fear of uncertain situations can po-

tentially limit the creative potential of individ-

uals with ASD.  

However, the unique feature of predictive 

processing and statistical learning in ASD 

may not always result in negative outcomes 

but could have positive effects in certain situ-

ations. Several studies have reported that in-

dividuals with ASD sometimes exhibit supe-

riority in certain abilities (Boucher et al., 

2012), such as mathematics, visual search 

skills (O’Riordan et al., 2001), and music and 

art skills (Happé and Frith, 2009; James, 

2010). Therefore, such a unique feature of 

predictive processing and statistical learning 

may not always result in negative outcomes 

but could have positive effects in certain situ-

ations. 

Thus, atypical brain development may 

display specific characteristics (rather than 

decay or facilitation) of predictive processing. 

It is assumed that these specificities of predic-

tive processing, that is hypo-/hyper and hypo-/ 

hyper-priors sensitivities, could impact statis-

tical learning ability and (statistical) creativity.  

 
Efficiency in learning or novelty in creation 

A previous study has found that individu-

als with ASD were able to come up with more 

unconventional and uncertain ideas during di-

vergent thinking tasks compared to typically 

developed individuals. However, the total 

number of ideas generated by individuals with 

ASD was fewer than that of typically devel-

oped individuals (Best et al., 2015).  
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Neural evidence partially supports this 

finding and explains it by the hypo-connectiv-

ity between the prefrontal cortex and other re-

gions in brains of individuals with ASD (Bel-

monte et al., 2004; Just et al., 2004, 2012; 

Courchesne and Pierce, 2005; Green et al., 

2020). Prior predictions are mainly generated 

in the frontal regions and transmitted to sen-

sory areas through synaptic connections 

(Cope et al., 2017; Park et al., 2018). The con-

nectivity between these regions is critical for 

conveying prior predictions and creating 

plausible representations of sensory input. 

However, in individuals with ASD, the al-

tered connectivity between these regions can 

lead to a modulation of prior predictions, re-

sulting in the production of uncertain infor-

mation, known as hypo-prior.  

Previous studies have shown that neural 

entrainment induced by statistical learning is 

enhanced when the prefrontal cortex is tem-

porarily disrupted using repetitive transcra-

nial magnetic stimulation (rTMS). This sug-

gests that the temporary disruption in prefron-

tal cortex function may have caused a hypo-

prior or hyper-sensitive state in the brain, po-

tentially resulting in improved statistical 

learning ability. Our simulation experiments 

have also shown that hyper-sensitivity leads 

to improved statistical learning ability from 

all aspects of reduction of prediction error, in-

crease of chunk, and 1-3 Hz rhythm acquisi-

tion, thereby supporting the findings of these 

previous studies. 

However, it is important to note that our 

simulation only controlled sensitivity (bot-

tom-up processing), not prior (top-down pro-

cessing), and the models repeatedly learned 

the same music. Therefore, in the hyper-sen-

sitive model, the reliability of the internal 

model inevitably increases due to the repeated 

learning of the same information. This means 

that hyper-sensitivity “during learning” could 

lead to a kind of hyper-prior “during produc-

tion”. Future study needs to investigate how 

the efficiency in learning (perception) and 

novelty in creativity (production) are affected 

when learning various types of information or 

when controlling for both sensitivity and prior. 

In summary, atypical alterations in prior 

prediction may display specific cognitive in-

dividuality involved in perception and pro-

duction (or learning and creation) through sta-

tistical learning. However, such an individu-

ality may not necessarily be favored over the 

other, as the efficiency of learning and the 

ease of creating new information may be par-

tially in a trade-off. This study suggests that 

simulation experiments using statistical learn-

ing may lead to a better understanding of the 

relationship between learning efficiency and 

creativity in learning systems that exhibit dif-

ferent levels of dependence on sensory signals. 

Further research on the cognitive individual-

ity may illuminate the potential diversity in 

human society.  

 
SUMMARY 

This study suggests that hyper-sensitivity 

allows for efficient statistical learning of in-

formation, but makes it difficult to generate 

new information, while hypo-sensitivity 

makes it difficult to learn statistically, but 

may make it easier to generate new infor-

mation. Different individual characteristics 

may not necessarily be favored over the other, 

as the efficiency of learning and the ease of 

generating new information may be partially 

in a trade-off. This study has the potential to 

shed light on the underlying factors contrib-

uting to the heterogeneous nature of the sup-

posedly innate ability of statistical learning 

that all individuals possess, as well as the par-

adoxical phenomenon in which individuals 

with certain cognitive traits that impede spe-

cific types of perceptual abilities exhibit supe-

rior performance in creative contexts. 
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