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In its recent edition the Archives of Tox-

icology have published a transcriptome-
based classifier that identifies developmental 
toxicants acting as histone deacetylase inhib-
itors. The authors, Eugen Rempel and col-
leagues from Dortmund Technical Universi-
ty, demonstrate that based on only eight 
genes the gene expression pattern of devel-
opmental toxicants acting as histone deacety-
lase inhibitors can be identified. They used a 
test system that recapitulates generation of 
neuroectoderm from pluripotent stem cells 
(Balmer et al., 2014; Zimmer et al., 2014; 
Leist et al., 2013; Stöber et al., 2014; Reif, 
2014). Exposure of the test cells for six days 
to six histone deacetylase inhibitors 
(HDACi) caused alterations in expression 
profiles that could be clearly differentiated 
from other compound classes, such as a het-
erogeneous group of ‘mercurials’. 

Currently, classification and grouping 
represents a cutting-edge topic in toxicologi-
cal research (Gocht et al., 2015; Godoy et al., 
2015; 2013; Grinberg et al., 2014; Shinde et 
al., 2015; Meganathan et al., 2015; Weng et 
al., 2014; Krause et al., 2013; Gebel et al., 
2014). To reach this goal in the field of de-
velopmental toxicity, stem cell based test 
systems have been developed that recapitu-
late different phases of human development 
(Krug et al., 2013; Leist et al., 2013; Bolt, 
2013; Hoelting et al., 2013). Using these sys-
tems it has been shown that three concentra-

tion ranges can be differentiated, namely tol-
erated concentrations where no gene expres-
sion changes occur, the teratogenic range 
which leads to deregulation of critical devel-
opmental genes and the cytotoxic concentra-
tion range where additional genes associated 
with cell death and catabolic metabolism are 
observed (Waldmann et al., 2014). Im-
portantly, the ‘teratogenic concentration 
range’ in vitro overlapped with concentra-
tions known to cause teratogenic effects in 
humans in vivo. A next challenge in test sys-
tem development is to develop expression 
signatures which indicate that specific toxic 
mechanisms are active. In this respect the 
present work of Rempel et al., using a set of 
structurally not related compounds acting by 
a similar mechanism, represents an important 
proof of concept (Rempel et al., 2015). Next 
open questions to be addressed are whether 
the test systems correctly identify further 
classes of developmental compounds and 
differentiate them from compounds acting by 
unspecific toxic mechanisms or substances 
that preferentially cause other types of tox-
icities. In the past and also presently devel-
opmental toxicity has mostly been tested in 
vivo (Lee et al., 2011; 2007; Liu et al., 2010; 
Moss et al., 2009; Xi et al., 2009; Oesch et 
al., 2008; Stapleton and Chan, 2009; Ejaz 
and Woong, 2006). Although some first im-
portant steps have been achieved in this field 
of in vitro research there seems to be a long 
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way to go until animal experiments in devel-
opmental toxicity can be fully replaced by 
alternative methods. 
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