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ABSTRACT 

Efficiently and precisely identifying drug targets is crucial for developing and discovering potential medications. 

While conventional experimental approaches can accurately pinpoint these targets, they suffer from time con-

straints and are not easily adaptable to high-throughput processes. On the other hand, computational approaches, 

particularly those utilizing machine learning (ML), offer an efficient means to accelerate the prediction of drugga-

ble proteins based solely on their primary sequences. Recently, several state-of-the-art computational methods 

have been developed for predicting and analyzing druggable proteins. These computational methods showed high 

diversity in terms of benchmark datasets, feature extraction schemes, ML algorithms, evaluation strategies and 

webserver/software usability. Thus, our objective is to reexamine these computational approaches and conduct a 

comprehensive assessment of their strengths and weaknesses across multiple aspects. In this study, we deliver the 

first comprehensive survey regarding the state-of-the-art computational approaches for in silico prediction of drug-

gable proteins. First, we provided information regarding the existing benchmark datasets and the types of ML 

methods employed. Second, we investigated the effectiveness of these computational methods in druggable protein 

identification for each benchmark dataset. Third, we summarized the important features used in this field and the 

existing webserver/software. Finally, we addressed the present constraints of the existing methods and offer valu-

able guidance to the scientific community in designing and developing novel prediction models.  We anticipate 

that this comprehensive review will provide crucial information for the development of more accurate and efficient 

druggable protein predictors. 

 

Keywords: Druggable proteins, sequence analysis, bioinformatics, machine learning, deep learning, ensemble 

learning 

 

INTRODUCTION 

Druggable proteins belong to large pro-

tein families identified as suitable drug tar-

gets. These proteins exhibit the ability to bind 

with high affinity to small drug-like mole-

cules, leading to desirable therapeutic effects 

(Liu and Altman, 2014; Owens, 2007).  

Approximately 60 % of projects in the drug 

discovery domain lead to failure due to the 

target being considered undruggable 

(Sakharkar et al., 2007). Therefore, the ad-

vancement in a drug discovery project, where 

the precise identification of drug targets is es-

sential, depends on the druggability of a pro-

tein (Overington et al., 2006). Analyzing the 
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three-dimensional structure of a protein 

through experimental methods leads to a 

lengthy development cycle (Sakharkar et al., 

2007). Although traditional experimental ap-

proaches are capable of accurately identifying 

drug targets, they are labor-intensive and not 

easily adaptable for high-throughput applica-

tions. Computational approaches that rely 

solely on the primary sequences of proteins 

can serve as a valuable supplement to experi-

mental methods, enabling swift characteriza-

tion and prediction of druggable proteins. The 

continuous discovery of novel proteins 

through next-generation sequencing opens up 

vast opportunities to identify potential drug-

gable candidates that remain unexplored. 

Therefore, the accurate and rapid identifica-

tion of druggable proteins from an extensive 

pool of sequenced proteins is of utmost im-

portance in the quest for developing new 

drugs (Lindsay, 2005).  

Over the last few decades, numerous at-

tempts have been made to develop data-

driven machine learning (ML)-based compu-

tational approaches to further the identifica-

tion and characterization of a variety of poten-

tial proteins and peptides in tandem with the 

experimental techniques (Charoenkwan et al., 

2023a, b; Hasan et al., 2021; Qiang et al., 

2020; Rao et al., 2018; Wang et al., 2019; Wei 

et al., 2018; Xie et al., 2021). In this field, 

there are ten existing state-of-the-art compu-

tational approaches, including DrugMiner 

(Jamali et al., 2016), Sun’s method (Sun et al., 

2018), GA-Bagging-SVM (Lin et al., 2019), 

DrugHybrid_BS (Gong et al., 2021), 

XGB‑DrugPred (Sikander et al., 2022), Iraji’s 

method (Iraji et al., 2022), Yu’s method (Yu 

et al., 2022), SPIDER (Charoenkwan et al., 

2022d), QuoteTarget (Chen et al., 2023), and 

DrugFinder (Zhang et al., 2023). Table 1 pro-

vides the information of these ten existing 

predictors in terms of benchmark datasets, 

feature extraction schemes, ML strategies, 

evaluation methods, and webserver availabil-

ity. Furthermore, the timelines of the existing 

computational approaches and web-

server/software availability are summarized 

in Figure 1.  

In this article, we deliver the first compre-

hensive survey regarding the existing state-

of-the-art predictors. Specifically, we cover a 

variety of multiple important aspects, includ-

ing benchmark datasets along with feature ex-

traction schemes, ML strategies, evaluation 

methods, and webserver availability. First, we 

summarized all benchmark datasets and the 

three types of ML methods used for the con-

struction and evaluation of the existing state-

of-the-art approaches. Second, we investi-

gated the effectiveness of these computational 

approaches for each benchmark dataset, con-

sidering both cross-validation and independ-

ent tests. Third, we provided a summary re-

garding the important features used in this 

field and the availability of existing web-

server/software. Finally, we discussed the 

current limitations of the existing methods 

and provided useful guidance to researchers 

who are interested in developing a more accu-

rate and robust approach in future studies. 

 

MATERIALS AND METHODS 

Overall framework of druggable protein 

identification using machine learning 

methods 

The ML framework of druggable protein 

identification is summarized in Figure 2. As 

can be seen, there are five main stages 

(Charoenkwan et al., 2021a, 2022b; 

Hongjaisee et al., 2019). The first stage is to 

prepare the benchmark training and independ-

ent test datasets. The training datasets are 

used for model training and optimization, 

while the independent test datasets are used 

for validating the generalizability and reliabil-

ity of the models. The second stage is to rep-

resent protein sequences into fix-length fea-

ture vectors (Qiang et al., 2020; Wei et al., 

2018). The third stage involves training and 

optimization of the prediction model based on 

several ML frameworks. In the fourth stage, 

the trained prediction models are evaluated 

using well-known performance evaluation 

strategies, such as k-fold cross-validation and 

independent tests (Arif et al., 2020; 

Manavalan et al., 2018). Finally, the selected  
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Figure 1: Timeline of the existing state-of-the-art predictors (A) and webserver/software availability (B) 

 

 
Figure 2: The general machine learning framework of the prediction of druggable proteins  

(A) 

(B) 
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Table 1: Summary of existing methods and tools for prediction of druggable proteins 

Method Year Type of 

ML 

Classifier a Features b Evaluation  

strategyc 

DrugMiner  

(Jamali et al., 2016) 

2016 Single NN AAC, DPC, PCP 5CV 

Sun’s method  

(Sun et al., 2018) 

2018 Single NN CTD 5CV/IND 

GA-Bagging-SVM  

(Lin et al., 2019) 

2019 Ensemble SVM DPC, RS, PAAC 5CV 

DrugHybrid_BS  

(Gong et al., 2021) 

2021 Ensemble SVM CC, GAAC, monoDIKgap 5CV 

XGB‑DrugPred  

(Sikander et al., 2022) 

2022 Single XGB GDPC, S-PseAAC, 

RAAA 

10CV 

Iraji’s method  

(Iraji et al., 2022) 

2022 Deep 

learning 

DSSAEs, 

CNN 

PCP HOOCV/IND 

Yu’s method  

(Yu et al., 2022) 

2022 Deep 

learning 

CNN-RNN + 

DNN 

Dictionary, DPC, TPC, 

CTD 

5CV/IND 

SPIDER (Charoenkwan et 

al., 2022d) 

2022 Ensemble SVM AAC, APAAC, DPC, 

CTD, PAAC, RS 

10CV/IND 

QuoteTarget  

(Chen et al., 2023) 

2022 Deep 

learning 

GCN Word2Vec 5CV/IND 

DrugFinder  

(Zhang et al., 2023) 

2023 Single XGB T5, PSSM, PBD, SeqVec 5CV/IND 

a NN: neural networks, XGB: eXtreme gradient boosting, CNN-RNNs: convolutional-recurrent neural networks, DNNs: deep neural 
networks, SVM: support vector machine, DSSAEs: deep stacked sparse auto-encoders, GCN: graph convolutional neural network 

bAAC: amino acid composition, APAAC: amphiphilic pseudo-amino acid composition, CC: Cross Covariance , CTD: composition-
transition-distribution, DPC: dipeptide composition; GAAC: grouped amino acid composition, GDPC: grouped dipeptide composi-
tion, monoDIKgap: kmer-based information, RAAA: reduced amino acid alphabet, RS: reduced sequence, PCP: physicochemical 
properties, PAAC: pseudo amino acid composition, PBD: deep learning-inspire features, PSSM: evolutionary information, S-Pse-
AAC: pseudo amino acid segmentation, SeqVec: Word2Vec-inspired feature. T5: Unrief50 corpus, TPC: tripeptide composition. 
c5CV: 5-fold cross-validation test, 10CV: 10-fold cross-validation test, IND: independent test, HOOCV: hold-one-out cross valida-
tion 

 

prediction models are implemented as an 

online webserver. 

 

Construction of training and independent 

test datasets 

Until now, there are four benchmark da-

tasets that have been used for developing the 

ten existing state-of-the-art computational ap-

proaches, including Jamali2016 (Jamali et al., 

2016), Sun2018 (Sun et al., 2018), Yu2022 

(Yu et al., 2022), and Chen2022 (Chen et al., 

2023). Table 2 provides details of these da-

tasets. The Jamali2016 dataset was estab-

lished by Jamali et al. (2016). This dataset 

consisted of 1,224 positives and 1,319 nega-

tives. In the Jamali2016 dataset, the positive 

samples were derived from proteins that are 

able to interact with drugs, while the negative 

samples were derived from proteins that can-

not be deemed as drug targets. The Ja-

mali2016 dataset was selected to develop six 

druggable protein predictors (i.e., DrugMiner 

(Jamali et al., 2016), GA-Bagging-SVM (Lin 

et al., 2019), DrugHybrid_BS (Gong et al., 

2021), XGB‑DrugPred (Sikander et al., 

2022), Iraji’s method (Iraji et al., 2022), and 

DrugFinder (Zhang et al., 2023)). For the 

Sun2018 dataset, it was introduced by Sun et 

al. (2018) and comprises two main sub-da-

tasets, including small and large datasets. The 

positive samples for the small dataset was di-

rectly obtained from the Jamali2016 dataset 

(1,224 positives), while the positive samples 

for the large dataset was obtained from exper-

imental small molecules’ targets based on 

DrugBank (5,503 positives). The negative 

samples for the small and large datasets con-

sisted of 1,235 and 5,498 samples, respec-

tively, derived from Swiss-Prot (Boeckmann 

et al., 2003). Regarding the dataset from 

Yu2022, it was proposed by Yu et al. (2022) 

by considering the Jamali2016 dataset as the 

training dataset, while Yu et al. utilized the 

DrugBank 5.0 database (Wishart et al., 2018) 
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along with the Kim’s study (Kim et al., 2017) 

to create the independent test dataset contain-

ing 224 positives and 237 negatives. The 

Yu2022 dataset was employed to develop a 

few druggable protein predictors (i.e., Yu’s 

method (Yu et al., 2022) and SPIDER 

(Charoenkwan et al., 2022d)). As for the last 

benchmark dataset in this field, it was col-

lected from the DrugBank 5.0 database 

(Wishart et al., 2018) and the Therapeutic 

Target Database (TTD) (Wang et al., 2020). 

The Blast tool was used to exclude redundant 

samples, with E-values of 0.001, 1, and 10 

(positives, negatives) resulting in databases of 

(11,803, 7900), (9,389, 5941), and (5330, 

3078), respectively. 

 

State-of-the-art computational approaches 

for druggable protein identification 

Based on the types of ML methods em-

ployed, the existing computational ap-

proaches listed in Table 1 can be categorized 

into three groups. The first group is developed 

based on single ML methods, such as neural 

network (NN), random forest (RF), and eX-

treme gradient boosting (XGB). The second 

group is developed based on ensemble learn-

ing methods, such as bagging and stacking 

strategies; and the third group is developed 

based on deep learning (DL) methods, such as 

convolutional neural network (CNN) and re-

current neural network (RNN). 

As can be noticed in Table 1, there are 

four out of ten existing computational ap-

proaches designed using single ML methods, 

including DrugMiner (Jamali et al., 2016), 

Sun’s method (Sun et al., 2018), 

XGB‑DrugPred (Sikander et al., 2022), and 

DrugFinder (Zhang et al., 2023). In 2016, 

DrugMiner was introduced by Jamali et al. 

(2016) and considered the first sequence-

based predictor designed for discriminating 

druggable proteins from non-druggable pro-

teins. In this method, three feature de-

scriptors, consisting of amino acid composi-

tion (AAC), dipeptide composition (DPC), 

and physicochemical properties (PCP), were 

used to represent druggable proteins as fix-

length feature vectors. Then, Jamali et al. 

combined these three feature descriptors and 

represented each sequence with 443-D feature 

vectors. The Relief method was then used to 

identify m out of 443 features. The high accu-

racy (ACC) of 0.921 was achieved by using 

NN in conjunction with the top-130 informa-

tive features. For XGB‑DrugPred, it was de-

veloped based on three well-known feature 

descriptors (i.e., grouped dipeptide composi-

tion (GDPC), reduced amino acid alphabet 

(RAAA), and pseudo amino acid segmenta-

tion (S-PseAAC)). Then, each feature de-

scriptor was optimized using the combination 

of RFE and XGB. After performing the fea-

ture optimization, top-73, top-17, and top-36 

information features from RAAA, GDPC, 

and S-PseAAC, respectively, were deter-

mined and integrated to generate the final fea-

ture vector. These fnal feature vectors were 

trained and tested for the performance of ET, 

RF, and XGB. The high ACC of 0.949 was 

achieved by using XGB. In case of Drug-

Finder, it was developed by Zhang et al. 

(2023). Zhang et al. performed experiments 

with many ML methods (i.e., XGB, RF, sup-

port vector machine (SVM), naive Bayes 

(NB), and k-nearest neighbors (KNN)) and 

feature encoding schemes (i.e., Seq2Vec, 

Prot_T5_Xl_Uniref50 (T5), position-specific 

scoring matrix (PSSM), and Prot_Bert_BFD). 

Among the four feature encoding schemes, 

the T5 model was then selected to perform the 

feature optimization process. The optimal 

model of Zhang’s study achieving a cross-val-

idation ACC of 0.950, was obtained from the 

combination of XGB and the top-1500 infor-

mation features. 
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Table 2: A summary of three benchmark datasets used in the existing methods 

Dataset Training dataset Independent test dataset Dataset 

availability  Positive Negative Positive Negative 

Jamali2016  

(Jamali et al., 2016) 

1224 1319 - - Yes a 

Sun2018  

(Sun et al., 2018) 

4952 6043 551 672 No 

Yu2022  

(Yu et al., 2022) 

1224 1319 227 237 Yes b 

Chen2022  

(Chen et al., 2023) 

3078 5530 - - Yes c 

a http://www.drugminer.org/  
b https://github.com/jingry/autoBioSeqpy/tree/2.0/examples/Druggableproteins 
c https://github.com/Chenjxjx/drug-target-prediction  

 

The limitation of single ML methods is 

that their performance was not satisfactory 

enough for practical applications. Therefore, 

the goal of ensemble learning methods is to 

integrate heterogenous weak ML models to 

create a single hybrid model with a more com-

prehensive performance. As shown in Table 

1, there are three computational approaches 

employed the ensemble learning methods to 

construct the prediction models, including 

GA-Bagging-SVM (Lin et al., 2019), 

DrugHybrid_BS (Gong et al., 2021), and SPI-

DER (Charoenkwan et al., 2022d). Specifi-

cally, GA-Bagging-SVM and 

DrugHybrid_BS were developed based on the 

bagging strategy, while only SPIDER was de-

veloped based on the stacking strategy. For 

the bagging strategy, there are three main 

steps for the construction of GA-Bagging-

SVM and DrugHybrid_BS, including feature 

representation, feature importance selection, 

and final model construction. Taking GA-

Bagging-SVM as an example, first, three fea-

ture descriptors (i.e., PAAC, DPC, and re-

duced sequence (RS)) were used to represent 

druggable proteins. The PAAC, DPC, and RS 

descriptors were defined as 23-D, 400-D, and 

163-D feature vectors, respectively. Second, 

the genetic algorithm (GA) was employed to 

optimize the original feature vector. Finally, 

multiple SVM classifiers were integrated to 

develop a hybrid model using the bagging al-

gorithm. The highest ACC and Matthew's 

correlation coefficient (MCC) of 0.934 and 

0.871 were attained by using top-143 in-

formative features. In case of the stacked 

model SPIDER, it is known as a stacked en-

semble learning model. Specifically, SPIDER 

involves two main levels of learning pro-

cesses, where the classifiers developed based 

on the first and second learning processes are 

called as the base-classifier and meta-classi-

fier, respectively. For the first step, 60 base-

classifiers were created by using six different 

ML methods, each in conjunction with ten 

feature encodings. In the second step, all the 

base-classifiers were employed to generate 60 

probabilistic features. These features were 

represented as a 60-dimensional (60-D) fea-

ture vector and used for the construction of 

the stacked model. 

To date, DL method has been known as a 

cutting-edge technique that is successfully 

utilized in the field of bioinformatics and 

computational biology (Charoenkwan et al., 

2021b; Rao et al., 2018; Wang et al., 2019; 

Xie et al., 2021). In this field, Table 1 shows 

that there are three computational approaches 

that employed DL methods to construct the 

prediction models, including Iraji’s method 

(Iraji et al., 2022), Yu’s method (Yu et al., 

2022), and QuoteTarget (Chen et al., 2023). 

Among these three druggable protein predic-

tors, Iraji’s method is the first druggable pro-

tein predictor applied using the DL method 

(Iraji et al., 2022). In Iraji’s method, Iraji et al. 

created two prediction models using PCPs. In 

the first prediction model, each protein se-

http://www.drugminer.org/
https://github.com/jingry/autoBioSeqpy/tree/2.0/examples/Druggableproteins
https://github.com/Chenjxjx/drug-target-prediction
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quence is encoded into fix-length feature vec-

tors based on the autocovariance method. The 

six PCPs, including polarity, hydrophilicity, 

hydrophobicity, polarizability, net charge in-

dex of side chain, and solvent-accessible sur-

face area, were applied in this step. As a re-

sult, each protein sequence is represented 

with a 180-D feature vector. The deep stacked 

sparse auto-encoders (DSSAEs) network de-

termines important features from the 180 fea-

tures. Then, a set of the important features is 

translated into a 30-D feature vector. In the 

second prediction model, the deep CNN was 

fed the output of DSSAEs. 

 

Performance evaluation measures 

To date, k-fold cross-validation and inde-

pendent tests have been widely used for the 

performance evaluation of the existing drug-

gable protein predictors. In the case of the 10-

fold cross-validation test, the dataset is di-

vided into 10 sub-datasets. For the 1st itera-

tion, one of the 10 sub-datasets is treated as 

the 1st testing dataset, while the remaining 

nine sub-datasets are employed to train the 1st 

prediction model. Thus, the prediction results 

of the 1st prediction model will be evaluated 

based on the 1st testing dataset. As a result, the 

process of the 10-fold cross-validation test is 

repeated 10 times. The final performance is 

obtained from the average performance over 

10 individual prediction results. To assess the 

predictive ability of the existing druggable 

protein predictors, seven commonly used per-

formance metrics were employed. These in-

clude ACC, F1, MCC, sensitivity (Sn), speci-

ficity (Sp), area under the receiver operating 

curve (AUC), and precision (PRE) 

(Charoenkwan et al., 2022a, c; Mandrekar, 

2010; Ullah et al., 2021). They are defined as 

follows: 

ACC =
TP + TN

(TP + TN + FP + FN)
 (1) 

F1 = 2 ×
TP

2TP + FP × FN
 (2) 

PRE =
TP

(TP + FP)
 (3) 

Sn =
TP

(TP + FN)
 (4) 

Sp =
TN

(TN + FP)
 (5) 

Specifically, TP and TN represent the 

numbers of true positives and true negatives, 

respectively, while FP and FN the numbers of 

false positives and false negatives, respec-

tively (Lai et al., 2019; Lv et al., 2020, 2021; 

Su et al., 2018). 

 

RESULTS AND DISCUSSION 

Comparative assessment and analysis 

Among the four benchmark datasets, Ja-

mali2016 (Jamali et al., 2016), Yu2022 (Yu et 

al., 2022), and Chen2022 (Chen et al., 2023) 

are commonly used for developing druggable 

protein predictors (Table 2). In this section, 

we assessed and analyzed the performance of 

all available druggable protein predictors 

based on each benchmark dataset.  

 

Performance evaluation on the Jamali2016 

dataset 

Jamali et al. (Jamali et al., 2016) created 

the Jamali2016 dataset containing 1,224 pos-

itives and 1,319 negatives (Table 2). Six state-

of-the-art druggable protein predictors, in-

cluding DrugMiner (Jamali et al., 2016), GA-

Bagging-SVM (Lin et al., 2019), 

DrugHybrid_BS (Gong et al., 2021), 

XGB‑DrugPred (Sikander et al., 2022), Iraji’s 

method (Iraji et al., 2022), and DrugFinder 

(Zhang et al., 2023), were built and evaluated 

based on this benchmark dataset using the 5-

fold and 10-fold cross-validation tests. The 

performance comparison results of the Ja-

mali2016 dataset are summarized in Table 3. 

The prediction performance of these six drug-

gable protein predictors was directly obtained 

from two literatures (i.e., Iraji et al. (2022) 

and Zhang et al. (2023)). The highest ACC of 

0.983 was achieved by Iraji’s method, while 

DrugHybrid_BS and DrugFinder performed 

well with the second and third highest ACC 

of 0.966 and 0.950, respectively. In addition, 

Sn and Sp of Iraji’s method were higher than 

the compared methods.  
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Table 3: Performance comparison of DrugMiner, GA-Bagging-SVM, DrugHybrid_BS, XGB-DrugPred, 
Iraji’s method, and DrugFinder on the Jamali2016 dataset 

Method Number of  

features 

ACC Sn Sp MCC AUC 

DrugMiner 135 0.921 0.928 0.913 0.820 0.973 

GA-Bagging-SVM  143 0.938 0.929 0.945 0.870 0.979 

DrugHybrid_BS 483 0.966 0.948 0.980 - – 

XGB-DrugPred 126 0.949 0.938 0.957 0.890 – 

Iraji’s method  180 0.983 0.969 0.995 - 0.980 

DrugFinder 1500 0.950 0.963 0.968 0.900 - 

ACC: accuracy, Sn: Sensitivity, Sp: specificity, MCC: Matthew's correlation coefficient, AUC: area under the receiver operating 
curve (AUC) 

 

These results indicate that Iraji’s method 

achieved superior predictive performance in 

terms of the Jamali2016 dataset. 

 

Performance evaluation on the Yu2022  

dataset 

Yu et al. (Sun et al., 2018) constructed the 

Yu2022 dataset by treating the Jamali2016 

dataset as the training dataset and employing 

the DrugBank 5.0 database (Wishart et al., 

2018) and Kim’s study (Kim et al., 2017) to 

construct the independent test dataset. The fi-

nal training dataset of this benchmark dataset 

consisted of 1,224 positives and 1,319 nega-

tives, while its independent test dataset con-

sisted of 224 positives and 237 negatives (Ta-

ble 2). Only two druggable protein predictors, 

including Yu’s method (Yu et al., 2022) and 

SPIDER (Charoenkwan et al., 2022d), were 

developed and assessed based on this bench-

mark dataset in terms of cross-validation and 

independent tests. The prediction perfor-

mance of these two druggable protein predic-

tors were directly obtained from the literature 

(Charoenkwan et al., 2022d). As can be seen 

in Table 4, cross-validation results reveal that 

SPIDER achieved the highest ACC, Sn, 

MCC, and F-score of 0.919, 0.895, 0.839, and 

0.914, respectively. In terms of the independ-

ent test results, SPIDER still demonstrated 

better performance across almost all perfor-

mance metrics (i.e., ACC, Sn, MCC, and F-

score). Thus, the cross-validation and inde-

pendent test results on the Yu2022 dataset are 

sufficient to indicate that SPIDER is an accu-

rate and stable druggable protein predictor.  

Performance evaluation on the Chen2022 

datasets 

Chen et al. (2023) constructed the 

Chen2022 dataset from the DrugBank 5.0 da-

tabase (Wishart et al., 2018) and the Thera-

peutic Target Database (TTD) (Wang et al., 

2020). In this benchmark dataset, Chen et al. 

created multiple datasets based on the E-

value. Among the several datasets in the study 

of Chen et al. (2023), two datasets, namely 

All-Pfam and App-Pfam, were used to de-

velop and assess three druggable protein pre-

dictors, which include GA-Bagging-SVM 

(Lin et al., 2019), Yu’s method (Yu, et al., 

2022), and QuoteTarget (Chen et al., 2023). 

The prediction performance of these three 

druggable protein predictors were directly ob-

tained from the literature (Chen et al., 2023). 

The performance comparison results are rec-

orded in Table 5. It can be observed that 

QuoteTarget outperformed GA-Bagging-

SVM and Yu’s method in terms of ACC, Sn, 

Sp, MCC, and F1 on both the All-Pfam and 

App-Pfam datasets. Specifically, QuoteTar-

get achieved the highest MCC of 0.900 and 

0.840 on the All-Pfam and App-Pfam da-

tasets, respectively. Meanwhile, the MCC of 

GA-Bagging-SVM and Yu’s method on the 

All-Pfam and App-Pfam datasets were 0.410, 

0.250 and 0.500, 0.650, respectively. 
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Table 4: Performance comparison of Yu’s method and SPIDER on the Yu2022 dataset 

Evaluation 

strategy 

Method Number of 

features 

ACC Sn MCC F1 PRE 

Cross- 

validation 

Yu’s method 5847 0.900 0.890 0.800 0.896 0.905 

 SPIDER 174 0.919 0.895 0.839 0.914 0.895 

Independent 

test 

Yu’s method 5847 0.898 0.848 0.799 0.889 0.936 

 SPIDER 174 0.907 0.857 0.816 0.899 0.857 

ACC: accuracy, Sn: Sensitivity, MCC: Matthew's correlation coefficient, F1: F-score, PRE: precision 

Table 5: Performance comparison of Yu’s method and SPIDER on the Yu2022 dataset 

Dataset Dataset ACC Sn Sp MCC F1 

All-Pfam GA-Bagging-SVM 0.730 0.560 0.720 0.410 0.610 

 Yu’s method 0.760 0.830 0.670 0.500 0.770 
 

QuoteTarget 0.950 0.910 0.980 0.900 0.940 

App-Pfam GA-Bagging-SVM 0.670 0.120 0.930 0.250 0.210 

 Yu’s method 0.840 0.810 0.930 0.650 0.830 
 

QuoteTarget 0.950 0.810 0.980 0.840 0.870 

ACC: accuracy, Sn: Sensitivity, Sp: specificity, MCC: Matthew's correlation coefficient, F1: F-score. 

Mechanistic interpretation of the models 

The analysis of important features is able 

to provide a better understanding of druggable 

protein identification. Among the existing 

studies, DrugHybrid_BS (Gong et al., 2021), 

Iraji’s method (Iraji et al., 2022), Yu’s method 

(Yu et al., 2022), SPIDER (Charoenkwan et 

al., 2022d), and XGB‑DrugPred (Sikander et 

al., 2022) have made efforts to determine the 

optimal feature sets and understand the mod-

els’ output. For example, in the study of SPI-

DER, the genetic algorithm (GA) in conjunc-

tion with self-assessment-report (SAR) 

(Charoenkwan et al., 2019) was used to filter 

informative features to construct the optimal 

feature set. Specifically, the Shapley Additive 

exPlanations (SHAP) method (Li et al., 2021; 

Lundberg and Lee, 2017; Wei et al., 2021) 

was selected to perform the feature optimiza-

tion. In particular, SHAP positive and nega-

tive values are referred to as predictions for 

druggable and non-druggable proteins, re-

spectively. Charoenkwan et al. (2022d) men-

tioned that LR-RSsecond, LR-DPC, SVM-

AAC, SVM-RSpolar, and PLS-RScharge 

were listed as the top five important features 

in terms of SHAP value. Their analysis results 

reported that LR-RSsecond, LR-DPC, SVM-

AAC, and SVM-RSpolar had positive SHAP 

values indicating that they contribute to the 

prediction of druggable proteins. As a result, 

for a new unknown sample, if the value of 

LR-RSsecond of this sample is very low, then 

this sample will likely be classified as a non-

druggable protein; otherwise, it will be classi-

fied as a druggable protein. 

 

Webserver and code availability 

To date, numerous studies have men-

tioned that developing webservers play an im-

portant role in facilitating experimental re-

searchers to carry out their experimental anal-

yses (Charoenkwan et al., 2022a, 2023a, b; Li 

et al., 2021). However, only two existing 

computational approaches (i.e., DrugMiner 

(Jamali et al., 2016) and SPIDER (Charo-

enkwan, et al., 2022d)) were deployed as 

webserver, while five existing studies (i.e., 

GA-Bagging-SVM (Lin et al., 2019), 

XGB‑DrugPred (Sikander et al., 2022), Yu’s 

method (Yu et al., 2022), QuoteTarget (Chen 

et al., 2023), and DrugFinder (Zhang et al., 
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2023)) provided their source codes (Table 6). 

Please note that, among the five existing stud-

ies, the source code of XGB‑DrugPred is not 

accessible (at 

https://github.com/wangphd0/drug). In con-

trast, the DrugMiner source code is publicly 

available at http://www.drugminer.org/. 

DrugMiner was developed using NN in con-

junction with top-130 informative features, 

but its evaluation was based solely on the 

cross-validation test, limiting its applicability 

for practical use. On the other hand, SPIDER 

was evaluated using both the cross-validation 

and independent tests, and its source code is 

publicly available at  http://pmlabstack.py-

thonanywhere.com/SPIDER. The cross-vali-

dation and independent test ACC for SPIDER 

were 0.919 and 0.907, respectively (Table 4). 

Overall, it can be concluded that SPIDER out-

performed that other existing approaches in 

terms of predictive accuracy. 

 

CURRENT LIMITATIONS AND  

FUTURE IMPROVEMENTS 

In this section, we aim to discuss the cur-

rent limitations of the ten existing state-of-

the-art predictors and provide useful guid-

anceto the scientific community in the design 

and development of more accurate, robust, 

and stable prediction models for in silico pre-

diction of druggable proteins. First, data re-

dundancy is one of the most important factors 

for model development (Charoenkwan et al., 

2021a; Wei et al., 2018). The current training 

datasets used to develop the existing methods 

contained redundant samples. Thus, it could 

be inferred that the existing methods might 

not provide stable and robust performance in 

some cases. To improve the stability and ro-

bustness of the models, it is desirable to con-

struct a high-quality dataset by removing re-

dundant samples using the CD-HIT tool (Li 

and Godzik, 2006). Second, the interpretabil-

ity of the existing methods remains unsatis-

factory. As mentioned above, few existing 

methods, including Yu’s method (Yu et al., 

2022) and SPIDER (Charoenkwan et al., 

2022d), achieved impressive performance in 
both the cross-validation and independent 

tests. However, these methods cannot directly 

provide a better understanding of druggable 

proteins (Liou et al., 2015; Vasylenko et al., 

2015). Recently, Charoenkwan et al. (2023a, 
 

Table 6: Summary of web server/source code availability for druggable protein identification 

Method Year Webserver/source code availability Status 

DrugMiner  

(Jamali et al., 2016) 

2016 http://www.drugminer.org/  Active 

GA-Bagging-SVM  

(Lin et al., 2019) 

2019 https://github.com/QUST-AIBBDRC/GA-

Bagging-SVM  

Active 

XGB‑DrugPred 

(Sikander et al., 2022) 

2022 https://github.com/wangphd0/drug  Inactive 

Yu’s method  

(Yu et al., 2022) 

2022 https://github.com/jingry/autoBioSe-

qpy/tree/2.0/examples/Druggableproteins  

Active 

SPIDER (Charoenkwan 

et al., 2022d) 

2022 http://pmlabstack.pythonany-

where.com/SPIDER  

Active 

QuoteTarget  

(Chen et al., 2023) 

2022 https://github.com/Chenjxjx/drug-target-pre-

diction   

Active 

DrugFinder  

(Zhang et al., 2023) 

2023 https://github.com/Melo-1017/DrugFinder  Active 

https://github.com/wangphd0/drug
http://www.drugminer.org/
http://pmlabstack.pythonanywhere.com/SPIDER
http://pmlabstack.pythonanywhere.com/SPIDER
http://www.drugminer.org/
https://github.com/QUST-AIBBDRC/GA-Bagging-SVM
https://github.com/QUST-AIBBDRC/GA-Bagging-SVM
https://github.com/wangphd0/drug
https://github.com/jingry/autoBioSeqpy/tree/2.0/examples/Druggableproteins
https://github.com/jingry/autoBioSeqpy/tree/2.0/examples/Druggableproteins
http://pmlabstack.pythonanywhere.com/SPIDER
http://pmlabstack.pythonanywhere.com/SPIDER
https://github.com/Chenjxjx/drug-target-prediction
https://github.com/Chenjxjx/drug-target-prediction
https://github.com/Melo-1017/DrugFinder
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b) introduced a novel propensity score repre-

sentation learning (PSR) method for the iden-

tification and analysis of several proteins and 

peptides. In the PSR method, it is capable of 

generating the propensities of amino acids 

and dipeptides in a supervised manner. Addi-

tionally, PSR-derived propensity scores are 

able to elucidate the relationship between pro-

teins/peptides and their essential physico-

chemical properties. In the future, we are mo-

tivated to employ the PSR method for devel-

oping an interpretable druggable protein pre-

dictor. Last, a webserver that can predict 

druggable proteins based on sequence infor-

mation will greatly facilitate large-scale iden-

tification. To date, numerous attempts have 

been made to develop more accurate and sta-

ble druggable protein predictors. However, 

they have not been deployed as webservers or 

stand-alone software, limiting their utiliza-

tion. It is recommended that more online web-

servers are highly needed to be developed to 

serve the community-wide efforts in identify-

ing new druggable proteins. 

 

CONCLUSIONS 

In this study, we provide the first compre-

hensive survey regarding the state-of-the-art 

computational approaches for in silico predic-

tion of druggable proteins. Specifically, we 

discussed the advantages and disadvantages 

of the state-of-the-art computational ap-

proaches, considering a variety of important 

aspects that are beneficial for developing an 

efficient and stable prediction model. These 

aspects include benchmark datasets along 

with feature extraction schemes, ML strate-

gies, evaluation methods, and webserver 

availability. Among the state-of-the-art com-

putational approaches, the experimental re-

sults demonstrated that SPIDER was able to 

provide a more reliable performance in terms 

of both the cross-validation and independent 

test results. In addition, this approach has 

been deployed as a user-friendly webserver, 

accessible at  http://pmlabstack.pythonany-

where.com/SPIDER. Although QuoteTarget, 

Yu’s method, and Iraji’s method can produce 

great performance, their utilization for large-

scale identification is limited. Based on our 

comparative analysis, it can be demonstrated 

that the SPIDER approach is deemed as the 

best computational approaches in terms of 

prediction performance and usability. 

 

Ethical statement 

This review paper does not include animal 

or human experiments. 

 

Conflicts of interest 

The authors declare no conflict of interest. 

 

Author contribution’s statement 

WS: Project administration, supervision, 

designing the study, formal analysis, visuali-

zation, investigation, preparation of the man-

uscript, revision of the manuscript. NS: Revi-

sion of the manuscript. JN: Preparation of the 

manuscript. All authors reviewed and ap-

proved the manuscript. 

 

Acknowledgments 

This work was fully supported by Mahi-

dol University and Faculty of Medical Tech-

nology, Mahidol University. 

 

Funding 

This project is funded by the National Re-

search Council of Thailand and Mahidol Uni-

versity (N42A660380), and Specific League 

Funds from Mahidol University. 

 

REFERENCES 

Arif M, Ali F, Ahmad S, Kabir M, Ali Z, Hayat M. 

Pred-BVP-Unb: Fast prediction of bacteriophage Vi-

rion proteins using un-biased multi-perspective proper-

ties with recursive feature elimination. Genomics. 

2020;112:1565-74. 

Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, 

Estreicher A, Gasteiger E, et al. The SWISS-PROT 

protein knowledgebase and its supplement TrEMBL in 

2003. Nucl Acids Res. 2003;31(1):365-70. 

Charoenkwan P, Schaduangrat N, Nantasenamat C, 

Piacham T, Shoombuatong W. iQSP: a sequence-based 

tool for the prediction and analysis of quorum sensing 

peptides via Chou’s 5-steps rule and informative phys-

icochemical properties. Int J Mol Sci. 2019;21(1):75. 

Erratum in: Int J Mol Sci. 2020;21(7). 

http://pmlabstack.pythonanywhere.com/SPIDER
http://pmlabstack.pythonanywhere.com/SPIDER


EXCLI Journal 2023;22:915-927 – ISSN 1611-2156 

Received: July 27, 2023, accepted: August 15, 2023, published: August 29, 2023 

 

 

926 

Charoenkwan P, Anuwongcharoen N, Nantasenamat 

C, Hasan MM, Shoombuatong W. In silico approaches 

for the prediction and analysis of antiviral peptides: a 

review. Curr Pharm Des. 2021a;27:2180-8. 

Charoenkwan P, Nantasenamat C, Hasan MM, Ma-

navalan B, Shoombuatong W. BERT4Bitter: a bidirec-

tional encoder representations from transformers 

(BERT)-based model for improving the prediction of 

bitter peptides. Bioinformatics. 2021b;37:2556-62. 

Charoenkwan P, Chiangjong W, Nantasenamat C, 

Moni MA, Lio’ P, Manavalan B, et al. SCMTHP: A 

new approach for identifying and characterizing of tu-

mor-homing peptides using estimated propensity 

scores of amino acids. Pharmaceutics. 2022a; 14(1): 

122. 

Charoenkwan P, Nantasenamat C, Hasan MM, Moni 

MA, Manavalan B, Shoombuatong W. StackDPPIV: A 

novel computational approach for accurate prediction 

of dipeptidyl peptidase IV (DPP-IV) inhibitory pep-

tides. Methods. 2022b;204:189-98. 

Charoenkwan P, Schaduangrat N, Moni MA, Ma-

navalan B, Shoombuatong W. SAPPHIRE: A stacking-

based ensemble learning framework for accurate pre-

diction of thermophilic proteins. Comput Biol Med. 

2022c;146:105704. 

Charoenkwan P, Schaduangrat N, Moni MA, Shoom-

buatong W, Manavalan B. Computational prediction 

and interpretation of druggable proteins using a stacked 

ensemble-learning framework. Iscience. 2022d;25(9): 

104883. 

Charoenkwan P, Chumnanpuen P, Schaduangrat N, Oh 

C, Manavalan B, Shoombuatong W. PSRQSP: An ef-

fective approach for the interpretable prediction of 

quorum sensing peptide using propensity score repre-

sentation learning. Comput Biol Med. 2023a;158: 

106784. 

Charoenkwan P, Pipattanaboon C, Nantasenamat C, 

Hasan MM, Moni MA, Shoombuatong W. PSRTTCA: 

A new approach for improving the prediction and char-

acterization of tumor T cell antigens using propensity 

score representation learning. Comput Biol Med. 

2023b;152:106368. 

Chen J, Gu Z, Xu Y, Deng M, Lai L, Pei J. QuoteTar-

get: A sequence‐based transformer protein language 

model to identify potentially druggable protein targets. 

Protein Sci. 2023;32(2):e4555. 

Gong Y, Liao B, Wang P, Zou Q. DrugHybrid_BS: Us-

ing hybrid feature combined with bagging-SVM to pre-

dict potentially druggable proteins. Front Pharmacol. 

2021;12:771808. 

Hasan MM, Alam MA, Shoombuatong W, Deng H-W, 

Manavalan B, Kurata H. NeuroPred-FRL: an interpret-

able prediction model for identifying neuropeptide us-

ing feature representation learning. Brief Bioinform. 

2021;22(6):bbab167. 

Hongjaisee S, Nantasenamat C, Carraway TS, 

Shoombuatong W. HIVCoR: A sequence-based tool 

for predicting HIV-1 CRF01_AE coreceptor usage. 

Comput Biol Chem. 2019;80:419-32. 

Iraji MS, Tanha J, Habibinejad M. Druggable protein 

prediction using a multi-canal deep convolutional neu-

ral network based on autocovariance method. Comput 

Biol Med. 2022;151:106276. 

Jamali AA, Ferdousi R, Razzaghi S, Li J, Safdari R, 

Ebrahimie E. DrugMiner: comparative analysis of ma-

chine learning algorithms for prediction of potential 

druggable proteins. Drug Discov Today. 2016;21:718-

24. 

Kim B, Jo J, Han J, Park C, Lee H. In silico re-identi-

fication of properties of drug target proteins. BMC Bi-

oinformatics. 2017;18:35-44. 

Lai H-Y, Zhang Z-Y, Su Z-D, Su W, Ding H, Chen W, 

et al. iProEP: a computational predictor for predicting 

promoter. Mol Ther Nucleic Acids. 2019;17:337-46. 

Li F, Guo X, Jin P, Chen J, Xiang D, Song J, et al. Por-

poise: a new approach for accurate prediction of RNA 

pseudouridine sites. Brief Bioinform. 2021;22(6): 

bbab245. 

Li W, Godzik A. Cd-hit: a fast program for clustering 

and comparing large sets of protein or nucleotide se-

quences. Bioinformatics. 2006;22:1658-9. 

Lin J, Chen H, Li S, Liu Y, Li X, Yu B. Accurate pre-

diction of potential druggable proteins based on genetic 

algorithm and Bagging-SVM ensemble classifier. Artif 

Intell Med. 2019;98:35-47. 

Lindsay MA. Finding new drug targets in the 21st cen-

tury. Drug Discov Today. 2005;10:1683-7. 

Liou Y-F, Vasylenko T, Yeh C-L, Lin W-C, Chiu S-H, 

Charoenkwan P, et al. SCMMTP: identifying and char-

acterizing membrane transport proteins using propen-

sity scores of dipeptides. BMC Genomics. 2015;16:1-

14. 

Liu T, Altman R. Identifying druggable targets by pro-

tein microenvironments matching: application to tran-

scription factors. CPT Pharmacometrics Syst Pharma-

col. 2014;3(1):e93. 



EXCLI Journal 2023;22:915-927 – ISSN 1611-2156 

Received: July 27, 2023, accepted: August 15, 2023, published: August 29, 2023 

 

 

927 

Lundberg SM, Lee S-I. A unified approach to interpret-

ing model predictions. In: NIPS'17: Proceedings of the 

31st International Conference on Neural Information 

Processing Systems, Dec. 2017 (pp 4768–77). Red 

Hook, NY: Curran Associates Inc., 2017. 

Lv H, Zhang Z-M, Li S-H, Tan J-X, Chen W, Lin H. 

Evaluation of different computational methods on 5-

methylcytosine sites identification. Briefings in bioin-

formatics. 2020;21:982-95. 

Lv H, Dao F-Y, Guan Z-X, Yang H, Li Y-W, Lin H. 

Deep-Kcr: accurate detection of lysine crotonylation 

sites using deep learning method. Brief Bioinform. 

2021;22(4):bbaa255. 

Manavalan B, Shin TH, Lee G. PVP-SVM: sequence-

based prediction of phage virion proteins using a sup-

port vector machine. Front Microbiol. 2018;9:476. 

Mandrekar JN. Receiver operating characteristic curve 

in diagnostic test assessment. J Thorac Oncol. 2010;5: 

1315-6. 

Overington JP, Al-Lazikani B, Hopkins AL. How 

many drug targets are there? Nat Rev Drug Discov. 

2006;5:993-6. 

Owens J. Determining druggability. Nat Rev Drug Dis-

cov. 2007;6(3):187. 

Qiang X, Zhou C, Ye X, Du P-f, Su R, Wei L. CPPred-

FL: a sequence-based predictor for large-scale identifi-

cation of cell-penetrating peptides by feature represen-

tation learning. Brief Bioinform. 2020;21(1):11-23. 

Rao RSP, Zhang N, Xu D, Møller IM. CarbonylDB: a 

curated data-resource of protein carbonylation sites. 

Bioinformatics. 2018;34:2518-20. 

Sakharkar MK, Sakharkar KR, Pervaiz S. Druggability 

of human disease genes. Int J Biochem Cell Biol. 2007; 

39:1156-64. 

Sikander R, Ghulam A, Ali F. XGB-DrugPred: com-

putational prediction of druggable proteins using eX-

treme gradient boosting and optimized features set. Sci 

Rep. 2022;12(1):5505. 

Su Z-D, Huang Y, Zhang Z-Y, Zhao Y-W, Wang D, 

Chen W, et al. iLoc-lncRNA: predict the subcellular 

location of lncRNAs by incorporating octamer compo-

sition into general PseKNC. Bioinformatics. 2018;34: 

4196-204. 

Sun T, Lai L, Pei J. Analysis of protein features and 

machine learning algorithms for prediction of drugga-

ble proteins. Quant Biol. 2018;6:334-43. 

Ullah M, Han K, Hadi F, Xu J, Song J, Yu D-J. PScL-

HDeep: image-based prediction of protein subcellular 

location in human tissue using ensemble learning of 

handcrafted and deep learned features with two-layer 

feature selection. Brief Bioinform. 2021;22(6): 

bbab278. 

Vasylenko T, Liou Y-F, Chen H-A, Charoenkwan P, 

Huang H-L, Ho S-Y. SCMPSP: Prediction and charac-

terization of photosynthetic proteins based on a scoring 

card method. BMC Bioinformatics. 2015;16(Suppl 

1):S8.  

Wang D, Liang Y, Xu D. Capsule network for protein 

post-translational modification site prediction. Bioin-

formatics. 2019;35:2386-94. 

Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et 

al. Therapeutic target database 2020: enriched resource 

for facilitating research and early development of tar-

geted therapeutics. Nucl Acids Res. 2020;48(D1): 

D1031-41. 

Wei L, Zhou C, Chen H, Song J, Su R. ACPred-FL: a 

sequence-based predictor using effective feature repre-

sentation to improve the prediction of anti-cancer pep-

tides. Bioinformatics. 2018;34:4007-16. 

Wei L, He W, Malik A, Su R, Cui L, Manavalan B. 

Computational prediction and interpretation of cell-

specific replication origin sites from multiple eukary-

otes by exploiting stacking framework. Brief Bioin-

form. 2021;22(4):bbaa275. 

Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, 

Grant JR, et al. DrugBank 5.0: a major update to the 

DrugBank database for 2018. Nucl Acids Res. 2018;46 

(D1):D1074-82. 

Xie R, Li J, Wang J, Dai W, Leier A, Marquez-Lago 

TT, et al. DeepVF: a deep learning-based hybrid frame-

work for identifying virulence factors using the stack-

ing strategy. Brief Bioinform. 2021;22(3):bbaa125. 

Yu L, Xue L, Liu F, Li Y, Jing R, Luo J. The applica-

tions of deep learning algorithms on in silico druggable 

proteins identification. J Adv Res. 2022;41:219-31. 

Zhang M, Wan F, Liu T. DrugFinder: Druggable pro-

tein identification model based on pre-trained models 

and evolutionary information. Algorithms. 2023;16(6): 

263.

 


