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ABSTRACT 

Quantitative structure–activity relationship (QSAR) study has been employed for predicting the inhibitory activi-
ties of the Hepatitis C virus (HCV) NS5B polymerase inhibitors. A data set consisted of 72 compounds was 
selected, and then different types of molecular descriptors were calculated. The whole data set was split into a 
training set (80 % of the dataset) and a test set (20 % of the dataset) using principle component analysis. The 
stepwise (SW) and the genetic algorithm (GA) techniques were used as variable selection tools. Multiple linear 
regression method was then used to linearly correlate the selected descriptors with inhibitory activities. Several 
validation technique including leave-one-out and leave-group-out cross-validation, Y-randomization method 
were used to evaluate the internal capability of the derived models. The external prediction ability of the derived 
models was further analyzed using modified r2, concordance correlation coefficient values and Golbraikh and 
Tropsha acceptable model criteria's. Based on the derived results (GA-MLR), some new insights toward molecu-
lar structural requirements for obtaining better inhibitory activity were obtained. 
 
Keywords: QSAR, Genetic algorithms, Multiple linear regression, HCV  
 
 

INTRODUCTION 

Hepatitis C virus (HCV), identified in 
1989 as the etiological agent of parenteral 
non-A non-B hepatitis, often causes the de-
velopment of malignant chronic disease, in-
cluding liver cirrhosis and hepatocellular 
carcinoma, frequently resulting in death 
(Alter et al., 1992; Choo et al., 1989; 
Leyssen et al., 2000). With an estimated 3 % 
of the global population infected with HCV, 
including 4.1 million in the United States 
alone, and no protective vaccine available at 

present, this disease has emerged as a serious 
global health problem (Wasley and Alter, 
2000; Alter et al., 1999). Although signifi-
cant advances have been made in the devel-
opment of treatments for chronic hepatitis C, 
their efficacy is not universal and only 50 % 
success has been reported in achieving a sus-
tained viral response for the current combi-
nation therapy with new pegylated (PEG) 
forms of interferon plus ribavirin (Dillon, 
2004; Hügle and Cerny, 2003; Walker et al., 
2003; Wang and Heinz, 2000). Moreover, 
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this therapy has considerable liabilities in-
cluding serious adverse side effects and high 
cost, thus highlighting the need to develop 
improved therapeutic options to target HCV 
infections (Cornberg et al., 2003).  

HCV is an envelope positive-stranded 
RNA virus. Its single-stranded ~9.6 kb RNA 
genome encodes a large polyprotein of 
~3010 amino acids comprising 4 structural 
proteins (Core, E1, E2, and p7) and 6 non-
structural proteins (NS2, -3, -4A, -4B, -5A, 
and -5B) (Grakoui et al., 1993; Hijikata et 
al., 1991; Lohmann et al., 1995). One of the 
NS proteins, NS5B, an RNA-dependent 
RNA polymerase (RdRp) is the most studied 
target for anti-HCV therapy as it is a crucial 
and unique component of the viral replica-
tion machinery (Dillon, 2004; Kaushik-Basu 
et al., 2007; Wang and Heinz, 2000). NS5B, 
a 68 kDa membrane-associated protein con-
tains motifs shared by all RdRps in which 
the catalytic domain is arranged around a 
central cleft in an organization that resem-
bles a right hand, with the “palm” “finger” 
and “thumb” subdomains common to poly-
merases (Bressanelli et al., 2002; Love et al., 
2003). Recombinant expression of active, 
soluble NS5B in a variety of systems has 
been achieved by various C-terminal dele-
tions between 21 and 55 amino acid residues 
and its biochemical properties investigated 
(Kaushik-Basu et al., 2007). All of these re-
ported recombinant HCV RdRps utilize a 
wide range of RNAs as template in vitro 
without preference, although they do prefer 
certain homo-polyribonucleotides to others 
and their activity is stimulated by GTP under 
specified conditions. Many screening assays 
for NS5B inhibitors utilize synthetic homo-
polymeric templates/primers. NS5B inhibi-
tors thus far identified by these screening 
procedures can be broadly classified as either 
nucleoside (NI) or non-nucleoside (NNI) in-
hibitors (Kaushik-Basu et al., 2007).  

Quantitative structure-activity relation-
ships (QSAR) studies play a key role in pre-
dicting the biological activity of new com-
pound and provide information that is useful 
for molecule designing and medicinal chem-
istry (Karbakhsh and Sabet, 2011; 

Noorizadeh and Farmany, 2014). QSAR 
model establishes the mathematical relation-
ship between chemical properties or activi-
ties of compounds with their various struc-
tural parameters (descriptors) such as topo-
logical, physicochemical, stereochemical or 
electronic indices (Pourbasheer et al., 2014b; 
Rathod, 2011). The most important step in 
building QSAR models is the selection of 
one or more molecular descriptors that can 
represent the true interpretation of molecular 
structure with its activity or properties (Niazi 
et al., 2006). Therefore, a validated QSAR 
model can provide valuable information, not 
only about the effect of fragments in molecu-
lar graph, but also it can predict the biologi-
cal activities without performing any exper-
imental efforts that the designing results are 
not clear. In this contribution, multiple linear 
regression (MLR) technique was employed 
to build QSAR models using the theoretical 
molecular descriptors selected by stepwise 
(SW) and genetic algorithm (GA) methods 
based on the training set compounds (Li et 
al., 2008) in order to correlate the biological 
activities of taken compounds with their 
chemical strutures.  

The primary goal of this work was to de-
velop a new and validated QSAR model, and 
then investigating the molecular structural 
requirements for improving the biological 
activities based on the derived models. 

 
METHODOLOGY 

Data set 
In this study, the data set consisting of 72 

molecules of Indole 5-carboxamide deriva-
tives along with their experimental inhibitory 
activities were taken from the literature 
(Beaulieu et al., 2011a, b). The chemical 
structures with their activities are shown in 
Table 1. The inhibitory activity values [IC50 
(nM)] were converted to the logarithmic 
scale pIC50 [-log IC50 (M)] so as to give nu-
merically larger value, and then used for the 
subsequent QSAR analyses. The molecules 
were divided into two subsets using principle 
component analysis (PCA) in which resulted 
in generation of the training set contained 59 
compounds and the test set contained 13 
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compounds. The training set was employed 
to build the model, and the test set was used 

to evaluate the external prediction ability of 
the built models.  

 
 
 

Table1: Chemical structures and the corresponding observed and predicted pIC50 values by GA-MLR 
method 

No. R1 R2 Exp. 
pIC50 

GA-MLR 

1 6.886 6.862 

2 7.398 7.179 

 

3 

 

H 6.062 6.369 

4 

 

Me 6.975 6.679 

5 

 

Et 6.550 6.866 

6 

 

iBu 6.206 6.198 

7 

 

Me 6.745 6.796 

8 

 

Me 7.337 7.296 

9a 

 

Me 7.469 6.945 

10 

 

Me 6.569 6.466 

11 

 

Me 6.462 6.757 
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No. R1 R2 Exp. 
pIC50 

GA-MLR 

12 

 

Me 6.383 6.407 

13a 

 

Me 6.441 6.678 

14 

 

Me 6.642 6.827 

15 

 

Me 6.526 6.569 

16 

 

Me 6.161 6.203 

17 

 

Me 6.009 6.342 

18 Me 6.377 6.294 

19a 

 

Me 6.301 6.193 

20 

 

Me 6.357 6.411 

21 

 

Me 6.398 6.334 

22 

 

Me 6.538 6.243 

23 

 

Me 6.569 6.331 

24 

 

Me 7.444 7.327 

25a 

 

Me 6.963 7.077 

26 

 

Me 6.959 6.996 

27 

 

Me 7.215 6.973 
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No. R1 R2 Exp. 
pIC50 

GA-MLR 

28 

 

Me 6.339 6.670 

29 

 

Me 7.149 6.962 

30 

 

Me 6.000 6.430 

31 

 

Me 7.081 6.865 

32 

 

Me 7.119 6.983 

33 Me 6.752 6.905 

34 Me 6.202 6.273 

35b Me 7.745 -- 

36a 

 

Me 6.062 6.369 

37 

 

Me 7.097 6.908 

38 Me 6.498 6.670 

39 Me 6.804 6.568 

40 

 

Me 7.387 7.178 

41 

 

Me 7.699 7.288 

42 Me 6.824 7.036 
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No. R1 R2 Exp. 
pIC50 

GA-MLR 

43a 

 

7.284 6.974 

44 

 

6.712 7.011 

45 

 

7.167 7.623 

46 

 

7.886 7.678 

47 

 

8.000 7.724 

48 

 

7.367 7.426 

49b 

 

6.638 -- 

50 

 

7.620 7.674 

51 

 

7.638 7.458 

52 

 

6.879 7.011 

53 

 

7.469  
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No. R1 R2 Exp. 
pIC50 

GA-MLR 

54 

 

6.907 7.445 

55a 

 

7.125 7.195 

56 

 

6.783 7.110 

57 

 

7.638 7.793 

58 

 

7.456 7.427 

59 

 

6.818 6.597 

60 

 

6.481 6.542 

61 

 

6.812 6.854 

62a 

 

6.499 6.438 

 

63 

 
 

7.032 6.990 
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No. R1 R2 Exp. 
pIC50 

GA-MLR 

64 

 
SO2NH2  

6.506 6.934 

65 

 
 

6.914 6.749 

66 

 
 

7.066 6.759 

67 

 
 

7.357 7.154 

68 

 
 

7.456 7.554 

69 

 

 

7.770 7.843 

70a 

 

 

7.569 7.412 

71 

 

6.128 6.335 

 
72 

 

7.194 6.905 

a Test set 
b Outliers 

 
Descriptor calculation 

The two-dimensional (2D) structures of 
the molecules were sketched in Hyperchem 
v7.3 software (HyperChem, 2002) and pre-
optimization was done using molecular me-
chanics force field (MM+) procedure, and 
final geometries optimization was performed 

using semi-empirical (AM1) method with 
root mean square gradient of 0.01 kcal mol-1. 
A total of 3224 different molecular de-
scriptors were calculated for each molecule 
using Dragon v5.5 package (Todeschini et 
al., 2010). The constant or near constant var-
iables were removed, and then, the collinear 
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descriptors (i.e. r>0.9) were removed. The 
remained molecular descriptors were then 
taken for variable selection tool to derive the 
most respective subset of descriptors. 

 
Principle Component Analysis (PCA) 

The division of the dataset into training 
and test set is the most crucial step since 
based on the selected compounds, the mod-
els are being built. To divide the dataset into 
training and the test set, principle component 
analysis (PCA) (Abdi and Williams, 2010) 
was used so as to split the dataset based on 
their chemical structures diversity. The com-
pounds in test set were selected considering 
the distribution in chemical structure diversi-
ty and also for avoiding the fitting problem, 
the better distribution of biological activities 
for selected compounds were considered. As 
a result of the PCA, 6 significant principal 
components (PC-s) were extracted from the 
variables (PC1=49.81 %, PC2=22.09 %, 
PC3=12.25 %, PC4=7.10 %, PC5=6.65 %, 
PC6=3.10 %,). PC1 and PC2 were selected for 
the division purpose since they covered the 
most variability in the dataset. The selection 
is first made based on the distribution of data 
points in PC1 and PC2 and then, the final 
candidate as test set compounds were chosen 
by considering the well-distribution for their 
biological activities.  

 
Variable selection technique 

The selection of relevant descriptors for 
building the predictive model is also an im-
portant step in model construction. The final 
goal in this step is to find the most respective 
descriptors which can be used to predict the 
biological activities with minimum error. In 
this contribution, we used two well-known 
variable selection methods including step-
wise (SW) and genetic algorithm (GA). 
Stepwise regression includes a regression 
model in which the selecting of predictive 
variables is done by an automatic procedure 
(Draper and Smith, 1981) considering the F-
test. Stepwise method pursues the forward 
selection and backward elimination rule 
where forward selection begins with no vari-
able presented in the model and testing the 

addition of each variable improving the 
model outcome while, backward elimination 
begins with all variable and assessing the 
removing of variables which can improve the 
model by being omitted (Draper and Smith, 
1981). In genetic algorithms, the initial step 
is creating a large number of randomly se-
lected descriptors termed chromosome where 
the variables are included in each chromo-
some called gene (Holland, 1975; Pourba-
sheer et al., 2014a, c). Despite the stepwise 
technique, genetic algorithm is not present-
ing the over fitting issue, since it is using 
correlation coefficient of leave-one-out 
cross-validation (Q2

LOO) as a fitness function 
where subset of variables are being evaluated 
by their fitness for selection as the most re-
spective descriptors. Subsequently, the sub-
sets with worse fitness function are being 
excluded and then, the remained subsets are 
breeding. Finally, the mutation is carrying 
out. Genetic algorithm technique was first 
developed by Leardi et al. (1992). Genetic 
algorithm and stepwise methods as selection 
tool were written in Matlab 6.5 program 
(Mathworks, 2005). 
 

RESULTS AND DISCUSSION 

The total data set was separated into a 
training set of 59 compounds to develop the 
models and a test set of 13 compounds using 
PCA. The training and test sets are shown in 
Table 1. After division of dataset, stepwise 
method was used to provide the most rele-
vant descriptors for modeling purpose. Mul-
tiple linear regression method then was used 
to linearly correlate the selected descriptors 
based on the stepwise techniques on the bi-
ases of training set compounds, and then 
evaluated using group of compounds as test 
set. During the derivation of model, 2 com-
pounds belonging to the test set were detect-
ed as outliers and excluded from analyses 
(Table 1). The derived linear equation based 
on SW-MLR is as follows: 

pIC50= 22.32 (±3.511) - 4.397 (±0.9607) 
EEig05x + 2.673 (±0.7931) GGI9 - 0.01958 
(±0.008726) RDF065m - 0.7414 (±0.1620) 
Mor19m + 49.53 (±11.34) R3u+ + 0.1809 
(±0.07231) C-028 (1) 
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Ntrain= 59, R2
train= 0.772, R2

test= 0.703, 
R2

adj= 0.745, Ftrain= 29.284, Ftest= 0.9878, 
RMSEtrain= 0.238, RMSEtest = 0.265, 
Q2

LOO=0.697, Q2
LGO= 0.720, Q2

BOOT= 0.712, 
CCCtrain=0.871, CCC test=0.781, r2m=0.596, 
r2m average=0.433, MAEtrain=0.190, MAEtest= 
0.192. 

In above equation, N is the number of 
training set compounds, R2 is the squared 
correlation coefficient, RMSE is the root 
mean square error, R2

adj is adjusted R2, 
Q2

LOO, Q2
LGO and Q2

BOOT are the squared 
cross-validation coefficients for leave one 
out, leave group out and bootstrapping re-
spectively, and F is the Fisher F-statistic. 
CCC is concordance correlation coefficient 
and evaluates the degree to which pairs of 
observations fall on the 45° line through the 
origin (Pourbasheer et al., 2014d). The r2m is 
modified r2 value and MAE is mean abso-
lute error. The developed model since repre-
sented lower accuracy for test set, Golbraikh 
and Tropsha acceptable model criteria's was 
employed to investigate the reliability of the 
derived model (Golbraikh and Tropsha, 
2002). Four conditions for accepting a model 
are as follows: 

1. Q2
LOO > 0.5 

2. R2 test> 0.6 
3. R଴

ଶ െ	R଴
′ଶ/Rଶ ൏ 0.1	and 

0.85 ൏ ܭ	 ′ ൏ 1.15 or Rଶ െ
	R଴

ଶ/Rଶ ൏ 0.1	 and 0.85 ൏ K ൏
1.15 

4. R଴
ଶ െ	R଴

ᇱଶ ൏ 0.3	  
where R is correlation coefficient be-

tween the observed and predicted values; R0
2 

is coefficients of calculation (correlation be-
tween predicted versus observed values with 
intercept of zero), and R0′

2 is correlation be-
tween predicted versus observed responses 
for regressions through the origin; K is slope 
and K′ is slope of regression lines through 
the origin. The results of this analysis were 
listed in Table 2. As it can be seen, the last 
condition for acceptance of a derived model 

based on SW-MLR was rejected. Therefore, 
the genetic algorithm as a method for varia-
ble selection was applied to the same data set 
(i.e. training and test set selected based on 
PCA) for selecting the best set of molecular 
descriptors. The GA-MLR analysis led to a 
model with six descriptors. This linear model 
and its statistical parameters are derived as 
follows: 

pIC50= 36.97 (±4.056) - 7.971 (±0.9724) 
EEig05r + 0.6368 (±0.1662) GGI4 - 0.1752 
(±0.06418) SPAN - 0.5972 (±0.1320) 
Mor19m + 45.88 (±13.05) R3u+ - 5.624 
(±1.617) R5p (2) 

Ntrain= 59, R2
train= 0.792, R2

test= 0.713, 
R2

adj= 0.778, Ftrain= 32.985, Ftest=1.3885, 
RMSEtrain= 0.227, RMSEtest = 0.252, Q2

LOO= 
0.737, Q2

LGO= 0.762, Q2
BOOT= 0.731, 

CCCtrain=0.884, CCCtest=0.819, r2m=0.666,  
r2m average=0.533, MAEtrain=0.188, MAEtest= 
0.213. 

The PCA results were shown in Figure 1. 
PC1–PC2 loadings plot using the six de-
scriptors for the best model (GA-MLR) were 
shown in Figure 2. In Figure 2, for the load-
ings it is confirmed that the compounds with 
higher biological activity values, located on 
the left side which are presenting a large 
contribution of the R3u+ descriptor, situated 
on the same side in Figure 1. On the other 
hand, compounds with lower biological ac-
tivity values, on the right side, have more 
pronounced contributions from the other de-
scriptors (mostly from R5p and EEig05r). 
Also it can be observed that the distribution 
of scores in Figure 1 is much more in right 
side and upper which represent that the most 
of compounds in data set have higher value 
for descriptors that have negative values than 
for the descriptors with positive effects. 
Therefore, the selected PCs are the true re-
presentative of the molecular descriptors that 
can be encoded for understanding the corre-
lation between chemical structures and bio-
logical activities. 
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Table 2: Golbraikh and Tropsha acceptable model criteria's for SW-MLR and GA-MLR 

 Values for SW-MLR Values for GA-MLR SW-MLR GA-MLR 

Condition I 0.697 0.736 Passed Passed 

Condition II 0.703 0.713 Passed Passed 

Condition III K= 0.99612 
K′= 1.0024 

Rଶ െ	R଴
ଶ/Rଶ  = 0.0329 

R଴
ଶ െ R଴

′ଶ/Rଶ = 0.542 

K= 0.99997 
K′= 0.99868 

Rଶ െ R଴
ଶ/Rଶ  = 0.006 

R଴
ଶ െ R଴

′ଶ/Rଶ = 0.270 

Passed Passed 

Condition IV R଴
ଶ െ R଴

ᇱଶ	= 0.358 R଴
ଶ െ R଴

ᇱଶ = 0.188 Failed Passed 

 
 

 
Figure 1: Principle component analysis with PC1 
and PC2 with test set for GA-MLR result 
 

Figure 2: PC1–PC2 loadings plot using the six 
descriptors for the best model (GA-MLR) 

 
 

Golbraikh and Tropsha acceptable model 
criteria's was employed for evaluating the 
prediction capability of the built GA-MLR 
model. The results are listed in Table 2. As it 
can be seen, the all conditions were accepted 
for GA-MLR and therefore, it was used as a 

main model for prediction purpose. The ex-
perimental and predicted activities based on 
this model were given in Table 1. The plot of 
the predicted pIC50 versus the experimental 
pIC50 is demonstrated in Figure 3. As can be 
seen from Table 1 and Figure 3, the calculat-
ed activity values are in good agreement 
with experimental activity values. 

 

 
Figure 3: The predicted pIC50 values by the GA-
MLR modeling vs. the experimental pIC50 values 
 
 

The inter-correlation between the six se-
lected descriptors was inspected by calculat-
ing their variance inflation factor (VIF), 
which are also given in Table 3. The VIF 
values, calculated as 1/1- r2, where r2 is the 
multiple correlation coefficient of one de-
scriptor’s effect regressed on the remaining 
molecular descriptors. If VIF equals to 1, 
then no inter-correlation exists for each vari-
able; if VIF falls into the range between 1 
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and 5, the related model is acceptable; and if 
VIF is larger than 10, the related model is 
unstable and a recheck is necessary (Maryam 
et al., 2012). As it can be seen by the given 
information of Table 3, most of the variables 
had VIF values of less than 5, indicating that 
the GA-MLR model has statistic signifi-
cance.  

The built GA-MLR model was validated 
using the leave-one-out and leave-group-out 
cross-validated correlation coefficients 
(Q2

LOO and Q2
LGO). The robustness of the 

GA-MLR model and its predictive ability 
was confirmed by the high Q2

BOOT source 
based on bootstrapping repeated 5000 times 
(Hadizadeh et al., 2013). The results pro-
duced by the Q2

LOO, Q2
LGO and Q2

BOOT pa-
rameters along with other validation parame-
ters showed the higher quality of the devel-
oped GA-MLR model. Therefore, this model 
can be used to predict the inhibition activity 
of the compounds.  

The robustness of the QSAR model was 
further assessed by applying Y-
randomization test. The dependent variable 
vector (inhibitory activity) was shuffled ran-
domly and the new QSAR models (after sev-
eral repetitions) would be anticipated to have 
low R2 and Q2

LOO values (Figure 4) 
(Asadollahi et al., 2011). As it can be seen 
from Figure 4, after 200 times shuffling the 
biological response for compounds, all of the 
derived new models were less than that of 
obtained in real response. 

The Williams plot, the plot of the stand-
ardized residuals versus the leverage (h), is 
used to visualize the applicability domain 
(AD) of QSAR models (Vahdani and Bayat, 
2011). From the Williams plot (Figure 5), it 
is obvious that there are only two com-
pounds (No. 1 and No. 6 belonging to the 
training set) have the leverage higher than 
the warning h∗ value of 0.356, thus they can 
be considered as structural outliers. From 
Figure 4, it is obvious that the standardized 
residuals observed for all the compounds in 
the training and test sets are smaller than 
three standard deviation units (3δ). Thus, the 
generated model is acceptable for prediction 
purpose. 

 

 
Figure 4: R2

train and Q2
LOO values after several  

Y-randomization tests for GA-MLR 
 

 
 
 

Table 3: Correlation coefficient matrix of the selected descriptors with their VIF values 

 EEig05r GGI4 SPAN Mor19m R3u+ R5p VIFa 

EEig05r 1 0 0 0 0 0 1.584 

GGI4 0.215 1 0 0 0 0 1.844 

SPAN -0.0051 0.513 1 0 0 0 2.449 

Mor19m -0.239 0.384 0.453 1 0 0 1.741 

R3u+ -0.398 0.276 0.495 0.530 1 0 2.871 

R5p 0.0655 -0.202 -0.623 -0.384 -0.685 1 2.631 

a variance inflation factor 
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Figure 5: The William plot for the predictive GA-
MLR model 
 
 
 
Interpretation of descriptors 

By interpreting the descriptors contained 
in GA-MLR model, some new insights can 
be obtained which can be helpful for under-
standing the correlation of chemical structure 
with biological activities. 

The first selected descriptor is Eigenval-
ue 05 from edge adj. matrix weighted by 
resonance integrals (EEig05r) which belongs 
to the edge adjacency indices and encodes 
the connectivity between graph edges 
(Todeschini and Consonni, 2000). Reso-
nance is a kind of energy stabilizing because 
of its delocalization effects over electrons in 
a bond network. As it can be seen, this de-
scriptor represented negative effect in de-
rived GA-MLR model encoding that increas-
ing in the value of EEig05r by increasing the 
capability of the molecules (the functional 
groups that provide resonance in bonding 
with other part of bonding network) for 
providing more resonances would cause to 
decrease the pIC50 of compounds. 

GGI4 is the second selected descriptor 
which is representing the topological charge 
index of order 4 (Todeschini and Consonni, 
2008). Topological charge indices are evalu-
ating the charge transfer between atoms. 
These types of descriptors were first intro-
duced by Galvez. In this concept a matrix 
called M was being obtained by multiplying 
the adjacency matrix A by the reciprocal 
square distance matrix (D-2). However to 

prevent the division by zero, the diagonal 
entries of the distance matrix remain the 
same; the obtained matrix M called the Gal-
vez matrix is then the unsymmetrical matrix 
(A×A) , and A is the number of atoms in ma-
trix. Based on the derived M matrix the 
charge term matrix (CTij) which is the 
charge transfer between the pair of consid-
ered vertices can be obtained as follows: 

  (3) 

where mij is elements of matrix M, δi is 
vertex degree of i atom. CTij is also repre-
senting the net charge transfer between atom 
j and i. Hence, for each path length k, a topo-
logical charge index termed as Gk can be ob-
tained as follows: 

  (4) 

where  and 

 is elements of distance matrix. Therefore, 
the Gk is the half-sum of all charge and indi-
cate the total charge transfer between atoms 
placed at topological distance k. The positive 
sign of this descriptor in derived linear equa-
tion indicates that increasing the charge 
transfer between the pair of atoms would re-
sult in increase of the pIC50 values, respec-
tively.  

The third selected descriptor (SPAN) is 
span R which belonged to geometrical size 
indices and represents the radius of the 
smallest sphere, centered on the mass, en-
closing all atoms of a molecule (Todeschini 
and Consonni, 2009), and can be calculated 
as follows: 

  (5) 

where ri is the distance of the ith atom 
from the center of the mass. Since this de-
scriptor represents the negative sign in de-
rived linear model, increasing the size of 
molecules by increasing the distance of spe-
cific moieties in molecules would result in 
decrease of the pIC50 values. 

Mor19m, the fourth selected descriptor 
of GA-MLR equation, 3D-MoRSE—signal 
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19/weighted by atomic masses, belongs to 
the 3D-MoRSE descriptors. This group of 
descriptors is subgroup of geometrical de-
scriptors (Todeschini and Consonni, 2000). 
Value of this group of descriptors is depend-
ent to 3D structure of molecule. 3D-MoRSE 
descriptors (3D-Molecule Representation of 
Structures based on electron diffraction) are 
based on the idea of obtaining information 
from the 3D atomic coordinates by the trans-
form used in electron diffraction studies for 
preparing theoretical scattering curves 
(Soltzberg and Wilkins, 1977). This can be 
performed by infrared spectra simulation us-
ing a generalized scattering function. The 
Mor19m is associated with negative regres-
sion coefficient indicating that decreases in 
the corresponding 3D-MoRSE signal at 
scanning distance of 19 would result in in-
crease of pIC50value, namely. 

The fifth and six descriptors (R3u+ and 
R5p, respectively) belong to the GETAWAY 
R-indices descriptors. GETAWAY de-
scriptors are for geometry, topology and 
atomic-weights assembly. These descriptors 
are geometrical descriptors in which provide 
good position of substituents and fragments 
in molecule (Consonni et al., 2002). In addi-
tion, they can carry on good information on 
molecular size and shape. R3u+ (R maximal 
autocorrelation of lag 3/unweighted) related 
to the maximum steric contributions to mol-
ecules shape with the topological distance of 
3 (Hall and Kier, 1995; Todeschini and 
Consonni, 2000). Since it presented a posi-
tive sign in derived linear equation, increas-
ing in value of this descriptor will cause to 
increase of the activity (pIC50). On the other 
hand, the other type of GETAWAY R-
indices (i.e. R5p) which is R maximal auto-
correlation of lag 5/weighted by polarizabil-
ity would cause decrease in biological activi-
ty (pIC50) due to its negative sign in obtained 
linear equation. Therefore, to obtain a good 
biological activity, the polarizibility of mole-
cule should be decreased. 

To conclude, it was observed that the ca-
pability of having more resonances in mo-
lecular graph is not appropriate and since 
most of the functional groups belonging to 

polar groups can represent the presence, 
therefore, the replacing of more polar groups 
should be avoided addressing to the negative 
effect of EEig05r and R5p descriptors. It was 
also seen that distance of substituents from 
mass center would cause negative effect on 
biological activities. However, a good bio-
logical activity can be presented if the charge 
transfer between bonding network and steric 
contributions to molecules shape increase. 

 
CONCLUSION  

A robust QSAR model was developed 
based on PCA-GA-MLR for a dataset con-
sisting of 72 HCV NS5B polymerase inhibi-
tors. The derived models were validated 
based on several validation techniques, and it 
was observed that GA-MLR is more accurate 
than the derived SW-MLR model. Based on 
the obtained results of GA-MLR, it was ob-
served that the capability of having more 
resonances in molecular graph is not appro-
priate and since most of the functional 
groups belonging to polar groups can repre-
sent the presence, therefore, the replacing of 
more polar groups should be avoided ad-
dressing to the negative effect of EEig05r 
and R5p descriptors. It was also seen that 
distance of substituents from mass center 
would cause negative impact over biological 
activities. However, a good biological activi-
ty can be presented if the charge transfer be-
tween bonding network and steric contribu-
tions to molecules shape increase. In this 
work, the proposed models could identify 
and provide better insights about the chemi-
cal structure requirements for increasing the 
pIC50 values. 
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