Letter to the editor

Role of WDR5 in breast cancer prognosis

Regina Stoeber1[*]

1Leibniz Research Centre for Working Environment and Human Factors (IfADo)

EXCLI J 2019;18:Doc1094


Dear Editor,

Recently, Punzi and colleagues published a study about the role of WDR5 in breast cancer metastasis (Punzi et al., 2019[17]). WDR5 is involved in epigenetic regulation complexes and has been reported to influence the expression of numerous genes, including N-cadherin, Snail1 and vimentin (Aho et al., 2019[1]; Ford and Dingwall, 2015[6]; Wu et al., 2011[25]; Chen et al., 2017[5]; Tan et al., 2017[23]). Several studies suggested WDR5 as a therapeutic target (Ye et al., 2019[26][27]; Macdonald et al., 2019[14]; Aho et al., 2019[1]; Zhang et al., 2018[28]; Lu et al., 2018[13]). In their present work, Punzi and colleagues report that downregulation of WDR5 by shRNA in breast cancer cells antagonizes the epithelial-to-mesenchymal transition through re-differentiation and reduces metastasis in a mouse model (Punzi et al., 2019[17]). Moreover, an association of high WDR5 expression with shorter metastasis-free survival was observed in a cohort of breast cancer patients (Punzi et al., 2019[17]). A further important finding of this study is that WDR5 activates TGFβ in breast cancer and that targeting the WDR5-TGFβ axis by a small molecular inhibitor reduces the migratory potential of breast cancer cells. Metastasis of breast cancer is a complex process (Loi et al., 2019[12]; von Minckwitz et al., 2019[24]; Gogiashvili, 2018[8]; Stoeber, 2017[22]). Besides epithelial-to-mesenchymal transition, genes involved in proliferation (Schmidt et al., 2018[19]), immune cell infiltration (Schmidt et al., 2012[18], 2018[19]; Heimes et al., 2017[9][10]; Godoy et al., 2014[7]), oxidative stress response (Cadenas et al., 2010[2], 2014[3], 2019[4]; Hellwig et al., 2016[11]) and inflammatory factors (Mattsson et al., 2015[16]; Sicking et al., 2014[20]) are of relevance; also key enzymes of phosphocholine metabolism have been shown to control breast and ovarian cancer metastasis (Marchan et al., 2017[15]; Stewart et al., 2012[21]). It will be interesting to learn in the next years, whether WDR5 targeting compounds can be identified that have a perspective to be tested in clinical studies.



1. Aho ER, Weissmiller AM, Fesik SW, Tansey WP. Targeting WDR5: A WINning anti-cancer strategy? Epigenet Insights. 2019;12:2516865719865282.
2. Cadenas C, Franckenstein D, Schmidt M, Gehrmann M, Hermes M, Geppert B, et al. Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res. 2010;12:R44.
3. Cadenas C, van de Sandt L, Edlund K, Lohr M, Hellwig B, Marchan R, et al. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle. 2014;13:3282-91.
4. Cadenas C, Vosbeck S, Edlund K, Grgas K, Madjar K, Hellwig B, et al. LIPG-promoted lipid storage mediates adaptation to oxidative stress in breast cancer. Int J Cancer. 2019;145:901-15.
5. Chen H, Lorton B, Gupta V, Shechter D. A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene. 2017;36:373-86.
6. Ford DJ, Dingwall AK. The cancer COMPASS: navigating the functions of MLL complexes in cancer. Cancer Genet. 2015;208:178-91.
7. Godoy P, Cadenas C, Hellwig B, Marchan R, Stewart J, Reif R, et al. Interferon-inducible guanylate binding protein (GBP2) is associated with better prognosis in breast cancer and indicates an efficient T cell response. Breast Cancer. 2014;21:491-9.
8. Gogiashvili M. Highlight report: Activating tumor-specific T-cells for breast cancer therapy. EXCLI J. 2018;17:1210-1.
9. Heimes AS, Madjar K, Edlund K, Battista MJ, Almstedt K, Elger T, et al. Subtype-specific prognostic impact of different immune signatures in node-negative breast cancer. Breast Cancer Res Treat. 2017;165:293-300.
10. Heimes AS, Madjar K, Edlund K, Battista MJ, Almstedt K, Gebhard S, et al. Prognostic significance of interferon regulating factor 4 (IRF4) in node-negative breast cancer. J Cancer Res Clin Oncol. 2017;143:1123-31.
11. Hellwig B, Madjar K, Edlund K, Marchan R, Cadenas C, Heimes AS, et al. Epsin family member 3 and ribosome-related genes are associated with late metastasis in estrogen receptor-positive breast cancer and long-term survival in non-small cell lung cancer using a genome-wide identification and validation strategy. PLoS One. 2016;11:e0167585.
12. Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37:559-69.
13. Lu K, Tao H, Si X, Chen Q. The histone H3 lysine 4 presenter WDR5 as an oncogenic protein and novel epigenetic target in cancer. Front Oncol. 2018;8:502.
14. Macdonald JD, Chacon Simon S, Han C, Wang F, Shaw JG, Howes JE, et al. Discovery and optimization of salicylic acid-derived sulfonamide inhibitors of the WD repeat-containing protein 5 (WDR5)-MYC protein-protein interaction. J Med Chem. 2019. doi:10.1021/acs.jmedchem.9b01411. [Epub ahead of print].
15. Marchan R, Büttner B, Lambert J, Edlund K, Glaeser I, Blaszkewicz M, et al. Glycerol-3-phosphate acyltransferase 1 promotes tumor cell migration and poor survival in ovarian carcinoma. Cancer Res. 2017;77:4589-601.
16. Mattsson JS, Bergman B, Grinberg M, Edlund K, Marincevic M, Jirström K, et al. Prognostic impact of COX-2 in non-small cell lung cancer: a comprehensive compartment-specific evaluation of tumor and stromal cell expression. Cancer Lett. 2015;356:837-45.
17. Punzi S, Balestrieri C, D'Alesio C, Bossi D, Dellino GI, Gatti E, et al. WDR5 inhibition halts metastasis dissemination by repressing the mesenchymal phenotype of breast cancer cells. Breast Cancer Res. 2019;21:123.
18. Schmidt M, Hellwig B, Hammad S, Othman A, Lohr M, Chen Z, et al. A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin κ C as a compatible prognostic marker in human solid tumors. Clin Cancer Res. 2012;18:2695-703.
19. Schmidt M, Weyer-Elberich V, Hengstler JG, Heimes AS, Almstedt K, Gerhold-Ay A, et al. Prognostic impact of CD4-positive T cell subsets in early breast cancer: a study based on the FinHer trial patient population. Breast Cancer Res. 2018;20:15.
20. Sicking I, Edlund K, Wesbuer E, Weyer V, Battista MJ, Lebrecht A, et al. Prognostic influence of pre-operative C-reactive protein in node-negative breast cancer patients. PLoS One. 2014;9:e111306.
21. Stewart JD, Marchan R, Lesjak MS, Lambert J, Hergenroeder R, Ellis JK, et al. Choline-releasing glycerophosphodiesterase EDI3 drives tumor cell migration and metastasis. Proc Natl Acad Sci U S A. 2012;109:8155-60.
22. Stoeber R. Highlight report: Intratumoral metabolomic heterogeneity of breast cancer. EXCLI J. 2017;16:1328-9.
23. Tan X, Chen S, Wu J, Lin J, Pan C, Ying X, et al. PI3K/AKT-mediated upregulation of WDR5 promotes colorectal cancer metastasis by directly targeting ZNF407. Cell Death Dis. 2017;8:e2686.
24. von Minckwitz G, Huang CS, Mano MS, Loibl S, Mamounas EP, Untch M, et al. Trastuzumab Emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380:617-28.
25. Wu MZ, Tsai YP, Yang MH, Huang CH, Chang SY, Chang CC, et al. Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell. 2011;43:811-22.
26. Ye X, Chen G, Jin J, Zhang B, Wang Y, Ye F. The development of inhibitors targeting the mixed lineage leukemia 1 (MLL1)-WD repeat domain 5 protein (WDR5) protein-protein interaction. Curr Med Chem. 2019. doi:10.2174/0929867326666190528080514. [Epub ahead of print].
27. Ye X, Zhang R, Lian F, Zhang W, Lu W, Han J, et al. The identification of novel small-molecule inhibitors targeting WDR5-MLL1 interaction through fluorescence polarization based high-throughput screening. Bioorg Med Chem Lett. 2019;29:638-45.
28. Zhang X, Zheng X, Yang H, Yan J, Fu X, Wei R, et al. Piribedil disrupts the MLL1-WDR5 interaction and sensitizes MLL-rearranged acute myeloid leukemia (AML) to doxorubicin-induced apoptosis. Cancer Lett. 2018;431:150-60.

[*] Corresponding Author:

Regina Stoeber, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany, eMail: regina.stoeber@gmx.de