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ABSTRACT 

The liver is a main target organ for the toxicity of many different compounds. While in general, in vivo testing is 
still routinely used for assessing the hepatotoxic potential of test chemicals, the use of in vitro models offers ad-
vantages with regard to throughput, consumption of resources, and animal welfare aspects. Using the human he-
patoma cell line HepaRG, we performed a comparative evaluation of a panel of hepatotoxicity marker mRNAs 
and proteins after exposure of the cells to 30 different pesticidal active compounds comprising herbizides, fungi-
cides, insecticides, and others. The panel of hepatotoxicity markers included nuclear receptor target genes, key 
players of fatty acid and bile acid metabolism-related pathways, as well as recently identified biomarkers of drug-
induced liver injury. Moreover, marker genes and proteins were identified, for example, S100P, ANXA10, 
CYP1A1, and CYP7A1. These markers respond with high sensitivity to stimulation with chemically diverse test 
compounds already at non-cytotoxic concentrations. The potency of the test compounds, determined as an overall 
parameter of their ability to deregulate marker expression in vitro, was very similar between the mRNA and protein 
levels. Thus, this study does not only characterize the response of human liver cells to 30 different pesticides but 
also demonstrates that hepatotoxicity testing in human HepaRG cells yields well comparable results at the mRNA 
and protein levels. Furthermore, robust hepatotoxicity marker genes and proteins were identified in HepaRG cells. 
 
Keywords: liver toxicity, in vitro testing, hepatocytes, relative potency factors, omics 
 
Abbreviations: ACN, acetonitrile; AHR, aryl hydrocarbon receptor; AOP, adverse outcome pathway; CAR, con-
stitutive androstane receptor; CYP, cytochrome P450; DMSO, dimethyl sulfoxide; FBS, fetal bovine serum; FA, 
formic acid; LC-MS, liquid chromatography-mass spectrometry; LOAEL, lowest observed adverse effect level; 
NOAEL, no observed adverse effect level; PBS, phosphate-buffered saline; PXR, pregnane-X-receptor; RPF, rel-
ative potency factor; TXP, Triple X Proteomics; WST, water-soluble tetrazolium 
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INTRODUCTION 

The liver is a main target organ of a pleth-
ora of toxicants, including for example, cer-
tain drugs, industrial chemicals, pesticidal ac-
tive compounds, natural toxins, environmen-
tal contaminants (Adams et al., 2005; EFSA 
Scientific Committee et al., 2019; Alexander, 
2012). In classic toxicological testing, hepa-
totoxicity of a test compound is determined in 
in vivo studies mainly conducted in rodents, 
based on detailed histopathological examina-
tion of tissue specimens after prolonged, re-
peated exposure to the test chemical (OECD, 
2019; Pradeep et al., 2016). Hepatic responses 
to exposure to xenobiotics can be manifold. 
Often, adaptive responses are observed, as ex-
emplified by hepatocyte hypertrophy and en-
largement of the smooth endoplasmatic retic-
ulum, which is frequently detected as a con-
sequence of the induction of hepatocellular 
drug-metabolizing capacities following acti-
vation of drug metabolism-regulating nuclear 
receptors by foreign compounds (Maronpot et 
al., 2010; Schulte-Hermann, 1979). Such re-
sponses include, for example, regulation of 
gene transcription by the constitutive an-
drostane receptor (CAR), the pregnane-X-re-
ceptor (PXR), or the aryl hydrocarbon recep-
tor (AHR) (Maronpot et al., 2010). The most 
prominent target genes of these receptors 
come from the cytochrome P450 (CYP) su-
perfamily of genes encoding important phase 
I drug-metabolizing enzymes (Tompkins and 
Wallace, 2007; Waxman, 1999). Reactive 
compounds or CYP metabolism-generated in-
termediates, such as radicals and electro-
philes, can cause oxidative stress to hepato-
cytes followed by cell death, whereas more 
subtle manifestations of toxicity often com-
prise alterations in crucial metabolic path-
ways of the hepatocytes. For example, dis-
turbance of the balance of fatty acid synthesis 
and degradation may result in fatty liver cells, 
potentially giving rise to progression of he-
patic steatosis to liver inflammation, cirrho-
sis, and cancer (Basaranoglu et al., 2013; 
Leung and Nieto, 2013; Sturgill and Lambert, 
1997). Another example is the disruption of 
bile acid synthesis and excretion leading to 

cholestatic livers (Padda et al., 2011; Wax-
man, 1992). Key genes and proteins affected 
by toxicants in such pathways have, in some 
cases, been assembled to so-called adverse 
outcome pathways (AOPs) which describe 
causal relationships of molecular events lead-
ing to adverse responses at the organ level 
(Ankley et al., 2010; Leist et al., 2017; 
Vinken, 2013). 

Animal studies are ethically disputed, ra-
ther cost- and time-consuming, especially in 
the case of repeated-dose studies, and ques-
tioned for their relevance to humans, due to 
possible species differences (Graham and 
Lake, 2008; Hackam and Redelmeier, 2006; 
Martignoni et al., 2006). Thus, there is a need 
for establishing in vitro approaches using hu-
man cells in order to circumvent the afore-
mentioned drawbacks. This holds especially 
true with respect to the testing of the effects 
of chemical mixtures. Here, testing of the 
multitude of possible combinations of indi-
vidual compounds is not feasible using ani-
mal-based approaches. A plethora of in vitro 
hepatotoxicity studies have been conducted 
using either primary hepatocytes or perma-
nent hepatoma-derived cell lines. Measured 
endpoints range from simple cell viability as-
says to the measurement of complex meta-
bolic endpoints, transcriptional responses or 
proteomic alterations (Bale et al., 2014; 
Kyffin et al., 2018; Soldatow et al., 2013).  

Especially transcriptomic signatures have 
been used to help characterizing the toxico-
logical mode of action of chemicals and to 
classify test compounds according to their 
mechanisms of toxicity. For example, a lot of 
research has been performed to distinguish 
genotoxic from non-genotoxic carcinogens 
using transcript-based omics approaches 
(Ellinger-Ziegelbauer et al., 2005; Jennen et 
al., 2010; Lee et al., 2013). In addition, panels 
of common marker genes for hepatotoxicity 
have been identified from omics data using 
bioinformatic methods (Albrecht et al., 2019; 
Grinberg et al., 2018). In contrast to the lot of 
work that has been performed at the mRNA 
level, proteomic data on hepatotoxicity have 
been studied less extensively. 
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Even though mRNAs are generally trans-
lated in proteins, a direct correlation of tran-
script and protein levels of a certain gene can-
not be expected, because additional layers of 
cellular regulation such as alterations in trans-
lation efficiency or protein stability may con-
siderably affect the outcome of protein level 
determination (Gry et al., 2009). Knowledge 
of the correlation of the RNA and protein 
level alterations can help to improve our un-
derstanding of in vitro systems for hepatocel-
lular toxicity, and contribute to assess the rel-
evance of RNA-based data sets. Therefore, 
we here performed a comparative characteri-
zation of transcript- and protein-level re-
sponses using 30 different pesticidal active 
compounds as test items. The human hepato-
carcinoma cell line HepaRG was chosen as a 
test system, based on the high degree of simi-
larity of these cells with human hepatocytes 
(Kanebratt and Andersson, 2008). 

 
MATERIALS AND METHODS 

Chemicals 
Cyproconazole, epoxiconazole, and pro-

chloraz were obtained from BASF or Syn-
genta, respectively. The batches used identi-
cal to what has been used in a previous study 
by Seeger et al. (2019). All other pesticidal 
active compounds were purchased from 
Sigma (Taufkirchen, Germany) in the highest 
available purity, dissolved in DMSO (purity 
> 99 %; Carl Roth, Karlsruhe, Germany), and 
stored at -20 °C until further use. In vitro test-
ing was performed up to the highest possible 
concentrations, limited by the compound-spe-
cific solubility in cell culture medium. All 
other chemicals were obtained from Sigma or 
Merck (Darmstadt, Germany) in the highest 
available purity. 

 
Cell culture 

Human HepaRG hepatocarcinoma cells 
were purchased from Biopredic International 
(Saint Grégoire, France) and seeded accord-
ing to the manufacturer's protocol at densities 
of 9,000, 100,000, or 200,000 cells/well in 
96-well, 12-well, or 6-well plates, respec-
tively. For cultivation William’s Medium E 

with 2 mM glutamine (PAN-Biotech, Aiden-
bach, Germany), 10 % (v/v) fetal bovine se-
rum (FBS; FBS Good Forte EU approved; 
PAN-Biotech), 100 U/ml penicillin and 100 
µg/ml streptomycin (Capricorn Scientific, 
Ebsdorfergrund, Germany), 0.05 % human 
insulin (PAA Laboratories GmbH, Pasching, 
Austria) and 50 µM hydrocortisone hemisuc-
cinate (Sigma) were used. Cells were cultured 
under standard cell culture conditions (37 °C 
in a humidified atmosphere with 5 % CO2). 
Cells were differentiated for 14 days, fol-
lowed by 14 days in medium additionally 
containing 1.7 % DMSO. Differentiated Hep-
aRG cells were pre-adapted to treatment me-
dium (culture medium containing only 2 % 
FBS and 0.5 % DMSO) for 48 h prior to ex-
posure in treatment medium for 24 h, with a 
final DMSO concentration of 0.5 %. Cell 
identity and differentiation status were 
checked microscopically. Differentiated Hep-
aRG cells exhibit characteristic, unique mor-
phological features, as provided by the manu-
facturer´s specifications as well as described 
in several publications (Cerec et al., 2007; 
Guillouzo et al., 2007; Parent et al., 2004). 
Additionally, cells were routinely checked for 
the absence of mycoplasma contaminations. 

 
Cell viability analysis 

Viability of cells treated with pesticidal 
active compounds was analyzed in HepaRG 
cells using the WST-1 cell assay (Sigma-Al-
drich, St. Louis, USA) as described by 
Luckert et al. (2018). In brief, cells were 
seeded in 96-well plates and incubated with 
the respective test compound. Triton X-100 
(0.01 %) served as a positive control for cyto-
toxicity. One hour before the end of incuba-
tion, 10 µl WST-1 reagent was added to each 
well containing 100 µl medium and incubated 
again for one hour. Afterwards, absorbance 
was measured at 450 nm and corrected by val-
ues measured at the reference wavelength of 
620 nm, using an Infinite M200 Pro plate 
reader (Tecan, Männedorf, Switzerland). At 
least three independent biological replicates, 
each with six technical replicates per condi-
tion, were run. 
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Analysis of mRNA expression levels 
Cells were seeded in 12-well plates and 

incubated for 24 h with the respective test 
compounds or solvent control (0.5 % 
DMSO). Afterwards, cells were washed twice 
with ice-cold phosphate-buffered saline 
(PBS) and lysed using 350 µl RLT buffer per 
well (RNeasy Mini Kit; Qiagen, Hilden, Ger-
many) containing 3.5 µl β-mercaptoethanol. 
RNA was isolated according to the manufac-
turer’s protocol. Additionally, potential DNA 
contaminations were removed by DNase di-
gestion (RNase-Free DNA Set; Qiagen). For 
higher yields, RNA was eluted twice in 30 µl 
H2O. RNA was quantified at 260 nm using a 
Tecan spectrometer (Tecan, Männedorf, 
Switzerland). For purity evaluation the 
260 nm/280 nm absorbance ratio was deter-
mined and ratios > 1.8 were considered an ac-
ceptable RNA purity. RNA integrity was 
checked by micro-gel electrophoresis using 
the Agilent RNA 6000 Nano Kit in a Bioana-
lyzer (Agilent Technologies, Santa Clara, CA, 
USA). Only RNAs with calculated RIN 
(RNA Integrity Number) values > 9 were 
used (quality ranging from 10, i.e. highly in-
tact RNA to 1, i.e. completely degraded 
RNA). RNA samples were stored at -80 °C. 
Primer design for quantitative RT-PCR ex-
periments (Supplementary Table 1) was per-
formed by using qPrimerDepot (Cui et al., 
2006) and RTPrimerDB (Lefever et al., 2008) 
and was validated by melting curve analysis. 
Relative expression from treatment proce-
dures against DMSO-treated Reference RNA 
of all 47 genes was analyzed using 30 ng total 
RNA and the SensiFAST™ SYBR® No-
ROX Kit (Bioline, Luckenwalde, Deutsch-
land). All measurements were conducted in 
triplicates from biological replicates on a 
LightCycler® 96 System (Roche, Basel, 
Schweiz) applying sample maximization as 
experimental plate design. Efficiency of gene 
amplification was calculated for each run with 
LinRegPCR (Ramakers et al., 2003; Ruijter et 
al., 2009). For calculation of relative expres-
sion - including normalization by three refer-
ence genes - the software REST384 (Pfaffl, 
2001; Pfaffl et al., 2002) was applied. 

Analysis of protein expression levels 
Cells were seeded in 12-well plates and 

incubated for 24 h with the respective test 
compounds or solvent control (0.5 % 
DMSO). Afterwards, cells were washed twice 
with ice-cold PBS and lysed using 400 µl/well 
lysis buffer containing 1 % NP-40, 0.01 % so-
dium dodecyl sulfate (SDS); 0.15 M sodium 
chloride; 0.01 M sodium phosphate; 2 mM 
ethylenediaminetetraacetic acid (EDTA); and 
2.5 U/ml benzonase at pH 7.2. After 1 h of 
shaking at 4 °C, lysates were collected and 
stored at -80 °C. After lysis, the protein con-
centration was determined using the bicincho-
ninic acid assay (Thermo Fisher Scientific, 
Waltham, USA). The manufacturer's protocol 
was used for this purpose. The samples were 
diluted 1:5 before analysis and the concentra-
tions determined with the microplate reader 
BioTek ELx808 (BioTek, Winooski, USA) at 
a wavelength of 562 nm. This was followed 
by tryptic proteolysis. Triethanolamine 
(TEA) with a final concentration of 50 mM 
and lysis buffer was added to the samples, 
which were then denatured at 99 °C for five 
minutes. After cooling to room temperature, 
tris(2-carboxyethyl) phosphine (TCEP; final 
concentration 5 mM) was added. After shak-
ing for 30 sec, iodoacetamide (IAA) with a fi-
nal concentration of 10 mM was added and 
samples were shaken again for 30 min at room 
temperature in the dark. Proteolysis was initi-
ated with the addition of trypsin (trypsin:pro-
tein ratio 1:40) and the samples were digested 
at 37 °C for either 2 or 16 h. To stop digestion, 
phenylmethanesulfonyl fluoride (PMSF) with 
a final concentration of 1 mM was added. The 
samples were centrifuged for 10 min at 
13,000 x g to remove cell debris. Before the 
samples were analyzed by liquid chromatog-
raphy-mass spectrometry (LC-MS), immuno-
precipitation was performed. The sample was 
mixed with PBS containing CHAPS (3-[(3-
cholamidopropyl) dimethylammonio] -1-pro-
panesulfonate), internal isotopically labeled 
standard peptide and the respective antibodies 
to enrich the target analytes. Special antibod-
ies (called Triple X Proteomics; TXP) were 
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used. These TXP antibodies specifically rec-
ognize the last four amino acids of the C-ter-
minus. Thus, an antibody can enrich not only 
one peptide but whole peptide groups at once 
(Poetz et al., 2009). The complete immuno-
precipitation was performed as described in 
Weiß et al. (2018). 

An Acclaim PepMap RSLC C18 (75 μm 
I.D. x 150 mm, 2 μm, Thermo Fisher Scien-
tific, Waltham, USA) analytical column and a 
trapping column Acclaim PepMap 100 C18 μ 
precolumn (0.3 mm I.D. x 5 mm, 5 μm, 
Thermo Fisher Scientific, Waltham, USA) 
were used for LC-MS analysis. The samples 
were measured in parallel reaction monitoring 
(PRM). The method duration was either 20 
min (for the CYP 17-plex with a flow rate of 
0.3 µl/min and an oven temperature of 40 °C) 
or 10 min (for all other multiplex assays with 
a flow rate of 1 µl/min and an oven tempera-
ture of 55 °C). Eluent A (aqueous phase) con-
sisted of LC-MS grade water, with 0.1 % for-
mic acid (FA) added. Eluent B (organic 
phase) of 80 % acetonitrile (ACN) and 20 % 
LC-MS grade water with 0.1 % FA. As load-
ing buffer, 2 % ACN with LC-MS grade wa-
ter and 0.05 % trifluoroacetic acid (TFA) was 
used. The evaluation of the data was carried 
out via Skyline 4.2.0. 19072. The ratio of the 
obtained endogenous signal and the internal 
isotopically labeled standard peptide was cal-
culated. For each analyte, only the most in-
tense fragment ion (quantifier ion) was used. 
For each test substance, cells were treated 
three times. Each sample was measured and 
mean values were calculated from the biolog-
ical replicates. Fold changes were obtained by 
referencing the results of the treatments to the 
solvent control. 

 
Determination of compound potency 

As recommended by EFSA (2011; EFSA 
Scientific Committee et al., 2017; Korten-
kamp et al., 2009) and described previously 
(Kienhuis et al., 2015; Staal et al., 2018), a 
benchmark dose (BMD) approach was used 
which is currently considered the most appro-
priate approach for deriving reference points. 
One kind of reference point obtained by this 

method is the relative potency of a compound. 
By scaling the concentration-response of one 
compound relatively against the concentra-
tion-response of another, i.e. the reference 
compound, the relative potency factor (RPF) 
was obtained as a scaling factor. Usually, 
RPFs are computed for a single parameter of 
interest, e.g. cytotoxicity or the induction of 
expression of a specific target gene. In the 
context of omics data, this would lead to a 
plethora of different RPFs and constitute a 
time-consuming and inefficient approach. To 
overcome this drawback we developed a strat-
egy which considers all analytes obtained dur-
ing transcriptomic or proteomics analysis ap-
plying confidence interval statistics. For this 
purpose, the width of the confidence interval 
of transcriptomic alterations as an equivalent 
for the overall degree of transcriptomic alter-
ations by one compound was used. Thus, half 
the width of confidence interval - mathemati-
cally defined as the absolute error e and meas-
ure of the accuracy of the estimation of a pa-
rameter - is defined as the potency factor 
(equation 1). 
 
݁ ൌ ೌ	ቀଵିݖ

మ
ቁ
ఙ

√
 (1) 

 
There, e denotes the absolute error or po-

tency factor, z denotes the ቀ1 െ 

ଶ
ቁ-quantile 

of standard normal distribution and  = 0.05, 
i.e. including 95 % of the values. The param-
eter  reflects the standard deviation and n is 
the number of data points per experiment. 
Due to different tested concentrations a cor-
rection for compound concentration by which 
effect was achieved is additionally required. 
Thus, e was furthermore divided into the ad-
ministered concentration per compound. The 
relative potencies were computed for all com-
pounds against each other. The software tool 
Genesis 1.8.1 (Sturn et al., 2002) was applied 
for Cluster analysis. 
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RESULTS 

Selection of hepatotoxicity markers and test 
compounds 

A panel of candidate hepatotoxicity mark-
ers was assembled based on data from the lit-
erature and own previous studies (Grinberg et 
al., 2018; Seeger et al., 2019). The panel in-
cluded various nuclear receptor target genes 
(e.g. from the cytochrome P450 (CYP) super-
family), key players of fatty acid and bile acid 
metabolism-related pathways as compiled in 
the AOPs for steatosis and cholestasis (e.g. 
(Mellor et al., 2016; Vinken, 2015; Vinken et 
al., 2013), as well as genes recently identified 

as biomarkers for drug-induced liver injury 
(e.g. Albrecht et al., 2019; Grinberg et al., 
2018). Following an initial screening ap-
proach with several hepatotoxic pesticides, 
some functionally redundant entries with very 
similar regulation (e.g. closely related CYP 
genes known to be affected by identical tran-
scription factors), as well as some genes not 
expressed in HepaRG cells or not influenced 
by any of the test compounds were removed 
from the panel, resulting in a final number of 
51 hepatotoxicity markers used for subse-
quent analyses. The selected markers are 
listed in Table 1. 

 
Table 1: Selection of hepatotoxicity markers and their function 

Gene Symbol 
/protein 

KEGG 
Gene ID 

Level of Detection selected Functions/Pathways (KEGG) 
mRNA Protein

ABCC2 hsa:1244 X  ABC transporter, bile secretion 
ABCC3 hsa:8714 X  ABC transporter, bile secretion 
ACOX2 hsa:8309 X  Lipid metabolism, PPAR signaling pathway,  

bile secretion 
ADH1B hsa:125 X X Chemical carcinogenesis, drug metabolism;  

vitamin metabolism 
ALDH3A1 hsa:218 X X Glycolysis / Gluconeogenesis, drug  

metabolism, lipid metabolism 
ANXA10 hsa:11199 X  Intracellular signaling (Moss and Morgan, 2004), 

cancer progression (Lu et al., 2013) 
ARG1 hsa:383 X X Amino acid metabolism, urea synthesis 
CCL20 hsa:6364 X  TNF signaling pathway, cytokine-cytokine  

receptor interaction 
CD36 hsa:948 X  PPAR signaling pathway, fatty acid transport,  

cholesterol metabolism 
CES2 hsa:8824 X  Drug metabolism 
CGA hsa:1081 X  Thyroid hormone synthesis, regulation of  

lipolysis in adipocytes 
COX1 (MT-CO1) hsa:4512 X  Non-alcoholic fatty liver disease (NAFLD),  

oxidative phosphorylation 
CYP1A1 hsa:1543 X X Drug metabolism, steroid hormone  

biosynthesis 
CYP1A2 hsa:1544  X Drug metabolism, steroid hormone  

biosynthesis 
CYP2A13 hsa:1553 X  Drug metabolism, chemical carcinogenesis 
CYP2C8 hsa:1558  X Drug metabolism, lipid metabolism 
CYP2C9 hsa:1559 X X Drug metabolism, lipid metabolism 
CYP2C19 hsa:1557  X Drug metabolism, lipid metabolism 
CYP2D6 hsa:1565 X  Drug metabolism 
CYP2E1 hsa:1571 X X Drug metabolism, non-alcoholic fatty liver  

disease (NAFLD) 
CYP3A4 hsa:1576  X Drug metabolism, lipid metabolism,  

bile secretion 
CYP3A5 hsa:1577 X  Drug metabolism, steroid hormone  

biosynthesis 
CYP7A1 hsa:1581 X X Lipid metabolism, steroid hormone biosynthesis, 

bile secretion, PPAR signaling 
FASN hsa:2194 X X Fatty acid metabolism/biosynthesis,  

insulin signaling pathway 
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Gene Symbol 
/protein 

KEGG 
Gene ID 

Level of Detection selected Functions/Pathways (KEGG) 
mRNA Protein

G6PC hsa:2538 X  Glycolysis / Gluconeogenesis, adipocytokine  
signaling pathway, insulin resistance 

GZMB hsa:3002 X  Type I diabetes mellitus, autoimmune thyroid  
disease, apoptosis 

HRG hsa:3273 X  Drug resistance 
HSD11B2 hsa:3291 X X Steroid hormone biosynthesis 
HULC hsa:72865

5 
X  Non-coding RNA, cancer progression (Panzitt et 

al., 2007; Yu et al., 2017b) 
IL6 hsa:3569 X  TNF signaling pathway, inflammation, non-alco-

holic fatty liver disease (NAFLD), Toll-like recep-
tor signaling pathway 

INSIG1 hsa:3638 X  feedback mediator of cholesterol and fatty acid 
synthesis (Smith et al., 2010; Yang et al., 2002) 

LMNA hsa:4000 X X Muscular dystrophy (Bonne et al., 1999), osteo-
blastogenesis (Novelli et al., 2002), cardiac ho-
meostasis (Fatkin et al., 1999) 

LY6D hsa:8581 X  Immunomodulatory processes (Inlay et al., 2009) 
MLXIPL hsa:51085 X  Non-alcoholic fatty liver disease (NAFLD), insulin 

resistance 
NEAT1 hsa:28313

1 
X  Non coding RNA, cancer progression (Yang et 

al., 2017; Yu et al., 2017a) 
NQO1 hsa:1728 X X Drug metabolism; antioxidative metabolism,  

metabolism of cofactors and vitamins 
NR1I3 (CAR) hsa:9970 X  Nuclear receptor signaling 
POR hsa:5447 X X Drug metabolism; fatty acid metabolism 
PRKDC hsa:5591 X X DNA replication and repair, cell cycle 
S100P hsa:6286 X X Cell cycle progression (Kligman and Hilt 1988), 

cell proliferation (Arumugam et al., 2004),  
carcinogenesis marker (Arumugam et al., 2005; 
Ohuchida et al., 2006) 

SCARA3 hsa:51435 X  Cellular stress response (Han et al., 1998; 
Whelan et al., 2012) 

SCD hsa:6319 X  Fatty acid metabolism, PPAR signaling pathway 
SLCO1B1 hsa:10599 X  Bile secretion 
SREBF1 hsa:6720 X  Non-alcoholic fatty liver disease (NAFLD), insulin 

signaling pathway 
SULT1B1 hsa:27284 X X Sulfonation of xenobiotics and hormones (Fujita 

et al., 1997) 
SYT1 hsa:6857 X  Synaptic vesicle cycle (Duan et al., 2011) 
TNFRSF12A hsa:51330 X X Cell proliferation, angiogenese, tumor growth 

(Wang et al., 2017; Wiley et al., 2001) 
UGT1A1 hsa:54658  X Drug metabolism, steroid hormone biosynthesis 
UGT1A3 hsa:54659  X Drug metabolism, steroid hormone biosynthesis 
UGT2B7 hsa:7364 X X Drug metabolism, steroid hormone biosynthesis 
UGT2B15 hsa:7366  X Drug metabolism, steroid hormone biosynthesis 
18S rRNA/ 
RNA18SN2 

- X  Reference gene 

GAPDH hsa:2597 X  Reference gene 
ACTB hsa:60 X  Reference gene 

 
 
Pesticidal active compounds were se-

lected as test chemicals with well-known tox-
icological profiles. In order to cover a broad 
spectrum of exposure-relevant pesticides, 30 
different substances were chosen for in vitro 
testing (Table 2). These belong to various 
chemical classes of pesticides, namely: ani-

linopyrimidines, benzimidazoles, carbox-
amides / dicarboximides, dithiocarbamates, 
imidazoles, morpholines, neonicotinoids, or-
ganophosphates, phthalimides, phenylpyra-
zoles / pyrazoles, strobilurins, triazoles, and 
quaternary ammonium compounds (Table 2), 
with liver as their main target organ in vivo. 
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Cell viability testing 
Using the WST-1 assay, all compounds 

were screened in HepaRG cells for 24 h re-
garding their cytotoxic potential, for the eval-
uation of suitable test concentrations for tran-
scriptomic and proteomic analysis (data not 
shown). The highest non-cytotoxic concentra-
tions from the WST-1 assay were selected for 
subsequent transcriptomic and proteomic 
analysis and are listed in Table 2. 

 
Transcriptomic and proteomic analysis of 
active compounds 

Using the selected highest non-toxic con-
centration of each compound, mRNA expres-
sion of the 44 hepatotoxicity marker genes 
was determined in HepaRG cells. The com-
plete dataset is contained in Supplementary 
Table 2. In total, a heterogeneous response 
was recorded at the mRNA level, involving 
up- and downregulation as well as pro-
nounced and more subtle responses. Data are 

summarized in Figure 1. Individual examples 
of regulation of selected genes are provided in 
Figure 2, showing the results for the preferen-
tially upregulated genes e.g. S100P, the pref-
erentially downregulated genes CYP7A1, and 
for e.g. NEAT1 showing only weak alterations 
upon pesticide treatment.  

In order to obtain correlating data at the 
protein level, a set of multiplexed targeted 
MS-based assays was used, consisting of ex-
isting and newly developed assays. In total, 
quantitative determination of 24 proteins was 
performed, with 17 proteins corresponding to 
important marker genes already assayed at the 
mRNA level (Table 1). HepaRG cells were 
incubated with the same concentrations of 
pesticidal active compounds as used for the 
mRNA analyses. Total results can be found in 
Supplementary Table 3 and are visualized in 
Figure 3. Selected protein level data are de-
picted in Figure 4. 

 
Figure 1: Hierarchical clustering (average linkage) method shows groups of downregulated genes 
(green) and upregulated genes (red) over all substances. Chlormequat, maneb, and thiram cluster most 
distant from all other compounds. 
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Table 2: Compound selection and tested concentrations in vitro 

Compound Abbr. CAS number Category Chemical class Target organs Conc. [µM]; 24 h 
Azoxystrobin AOS 131860-33-8 Fungicide Strobilurine L, D 100 
Boscalid BOS 188425-85-6 Fungicide Carboxamide L, D, T 500 
Carbendazim CBZ 10605-21-7  Fungicide Benzimidazole L, K 250 
Cyproconazole Cc 94361-06-5 Fungicide Triazole L, D 80 
Cyprodinil CDN 121552-61-2 Fungicide Anilinopyrimidine L, D, T 100 
Chlormequat CMQ 999-81-5 Herbicide Quaternary ammonium L, N 1000 
Chlorpyrifos CLP 2921-88-2 Insecticide Organophosphate L, N, D, A, E 200 
Captan CPT 133-06-2 Fungicide Phthalimide L, D 50 
Difenoconazole DIF 119446-68-3  Fungicide Triazole L, E, H, D 25 
Dimethomorph DIM 110488-70-5 Fungicide Morpholine L, D 500 
Epoxiconazole EPC 133855-98-8 Fungicide Triazole L, A, D, H 80 
Ethoprophos ETP 13194-48-4 Nematicide Organophosphate L, N, D, E, H 500 
Fludioxonil FDO 131341-86-1 Fungicide Phenylpyrrole L, H, K 250 
Fenhexamid FHM 126833-17-8 Fungicide Hydroxyanilid L, D, E, H, K 250 
Fipronil  FIP 120068-37-3 Insecticide Phenylpyrazole L, D, K, N, T 50 
Flusilazole FLZ 85509-19-9 Fungicide Triazole L, D, U 80 
Fluxapyroxad FLP 907204-31-3 Fungicide Pyrazole-carboxamide L, T 250 
Fenpyroximate FPX 134098-61-6  Acaricide Pyrazole L, D 5 
Imazalil IMZ 35554-44-0 Fungicide Imidazoles L, D 50 
Iprodione IPR 36734-19-7  Fungicide Dicarboximide L, A, D, H, K, U 200 
Maneb MAN 12427-38-2 Fungicide Dithiocarbamate L, T, D, N, H 200 
Myclobutanil MCB 88671-89-0 Fungicide Triazole L, D 250 
Metalaxyl MTX 57837-19-1  Fungicide Acylalanine L, H 1000 
Pyraclostrobin PCL 175013-18-0 Fungicide Strobilurine L, D, K, H 25 
Prochloraz PCZ 67747-09-5 Fungicide Imidazole L, D 80 
Propiconazole PPC 60207-90-1 Fungicide Triazole L, D 80 
Tebuconazole TBC 107534-96-3 Fungicide Triazole L, D, A, E, H 80 
Thiacloprid THI 111988-49-9 Insecticide Neonicotinoid L, D, E, N, T 500 
Thiamethoxam TMX 153719-23-4 Insecticide Neonicotinoid L, A, D, E, H, K 1000 
Thiram TRM 137-26-8  Fungicide Dithiocarbamate L, D, N, E, T 100 

L: liver; K: kidney; A: adrenal gland; E; eye; U: urinary bladder; H: hematological system; D: developmental and reproductive system; T: thyroid system; N: nervous system  
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Figure 2: Representative deregulated transcripts in HepaRG cells after 24 h of treatment with 30 differ-
ent pesticidal active compounds. Preferentially upregulated transcripts (a), preferentially downregulated 
transcripts (b), and transcripts with only weak alterations (c) are shown. 
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Figure 3: Hierarchical clustering method (average linkage) shows groups of downregulated proteins 
(green) and upregulated proteins (red) over all substances. Ethoprophos, maneb, and thiram cluster 
most distant from all other compounds. 
 
 
RNA-protein correlation of hepatotoxicity 
markers in HepaRG cells 

Subsequently, correlation of the data ob-
tained individually at the mRNA and protein 
levels was assessed. For each of the 17 hepa-
totoxicity markers for which mRNA and pro-
tein data were available, correlations were an-
alyzed. This is exemplarily depicted for 
S100P, NQO1, CYP2C9, and HSD11B2 in 
Figure 5. The full datasets are available in 
Supplementary Tables 2 and 3. Similar to 
S100P, CYP1A1, and TNFRSF12A also pre-
dominantly showed a consistent upregulation 
at the mRNA and protein levels by most 
chemicals (Figure 5; and data not shown). 
Predominant downregulation at both, the 
mRNA and protein levels was observed for 
ADH1B, ARG1, CYP2C9, CYP2E1, 
SULT1B1, and UGT2B7 (Figure 5; and data 
not shown). A tendency for that behavior was 
also seen for CYP7A1; however, the fact that 
protein levels of CYP7A1 were below the 
LOQ in several samples impeded comprehen-
sive comparative analysis of this marker 
gene/protein (data not shown). A positive cor-
relation between mRNA and protein data was 
also visible for ALDH3A1, FASN, and POR, 

even though a considerable number of devia-
tions (8, 9, and 12 out of 30 compounds, re-
spectively) from consistent up- or downregu-
lation in the two datasets were recorded (data 
not shown). A comparable weak regulation of 
NQO1, without clear preference for up- or 
downregulation by a majority of compounds, 
was seen at the mRNA as well as protein lev-
els (Figure 5). Inverse correlation of the direc-
tion of regulation was only observed for 2 of 
the 17 mRNAs/proteins, namely LMNA and 
PRKDC (data not shown). For HSD11B2, 
downregulation of mRNA expression but no 
clear-cut regulation at the protein was visible, 
possibly indicating a delayed response at the 
protein level (Figure 5). Overall, these find-
ings point towards an overall good accord-
ance of the responses obtained at the tran-
scriptional and proteomic levels. 

 
Omics-derived relative potency factors 

In addition to the qualitative correlation of 
the direction of responses at the level of indi-
vidual genes or proteins, we were also inter-
ested in comparing the overall relative poten-
cies of the test compounds to alter RNA and 
protein levels on a broader basis. For this  
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Figure 4: Representative deregulated proteins in HepaRG cells after 24 h of treatment with 30 different 
pesticidal active compounds. Preferentially upregulated proteins (a), preferentially downregulated pro-
teins (b), and proteins with only weak alterations (c) are shown. #, no endogenous protein levels de-
tectable. Data below the lower limit of quantification (LLOQ) of 0.075 fmol/µg Protein (CYP1A1) are 
marked with ~.  
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Figure 5: RNA-protein correlation of different hepatotoxicity markers assayed in HepaRG cells treated 
with 30 pesticidal active compounds for 24 h. Representative examples of common upregulation 
(S100P; panel a), common downregulation (CYP2C9; panel b), common lack of regulation (NQO1; 
panel c), as well as regulation at the mRNA but not protein level (HSD11B2; panel d) are depicted. Each 
dot represents the mean data from mRNA and protein quantification resulting from treatment of HepaRG 
cells with an individual chemical. 
 
 
purpose, we decided to use relative potency 
factors derived by a benchmark dose ap-
proach. Such potency factors constitute a use-
ful compound-characterizing parameter that 
is usually related to one specific biological 
endpoint, e.g. CYP3A4 expression. To adapt 
this approach to multi-endpoint data as result-
ing from omics analysis, the development of 
a strategy that considers the whole dataset 
needs to be developed. For this purpose, we 
developed a method that uses the width of the 
confidence interval of transcriptomic or pro-
teomic alterations as an equivalent for the 
overall degree of transcriptomic alterations by 
one compound, independent of the nature of 

the specific genes or proteins that were sub-
ject to regulation. The mathematical back-
ground of the total omics RPF approach is de-
scribed in detail in the ‘Materials and Meth-
ods’ section, paragraph ‘Determination of 
compound potency’. This way, we were able 
to deduce RPFs for all compounds, based on 
their ability to deregulate gene or protein ex-
pression in HepaRG cells. Heatmap visualiza-
tion of the RPFs is presented in Figure 6A. 
For a full table of RPFs, please refer to Sup-
plementary Table 4. When comparing the 
RPFs derived from transcriptomic and prote-
omic analysis, it became evident that a high 
degree of concordance was present in the two 
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datasets, i.e. that compounds which strongly 
altered the transcriptomic pattern of HepaRG 
cells were also potent at the protein level. 
Correlation analysis resulted in an R2 value of 
0.9515 (Figure 6B) with difenoconazole 
(DIF), fenpyroximate (FPX), and pyra-
clostrobin (PCL) being identified as the most 
potent compounds. 
 

DISCUSSION 

The present work on the regulation of 
hepatotoxicity markers in HepaRG cells 
shows an overall good correlation between 
changes at the mRNA and protein levels, sug-
gesting a considerable degree of comparabil-
ity of the data obtained at the mRNA and pro-
tein levels. The broad response of HepaRG 
cells to the various hepatotoxic compounds 
underlines their usefulness as an in vitro 
model system for human liver cells. Interest-
ingly, many genes show a uniform-type re-
sponse, which means that they are generally 

either down- or upregulated by most of the 
test compounds. This is remarkable, as there 
is high chemical diversity among the thirty 
test compounds, connected to a variety of dif-
ferent molecular targets resulting in different 
mechanisms of toxicity. For some genes, it 
might be expected to observe such a pattern. 
Such an example could be a nuclear receptor 
target gene with low constitutive expression 
and pronounced inducibility, for example the 
AHR target CYP1A1 (Barouki et al., 2007; 
Schulthess et al., 2015). As not only classic 
AHR ligands such as dioxins, but also 
weaker, non-prototypical ligands can affect 
CYP1A1 expression, an induction by many 
test compounds is plausible. Of note, weak 
activation of AHR-dependent transcription 
has been published for some of the com-
pounds used here, for example propiconazole 
(Knebel et al., 2018, 2019a), tebuconazole 
(Knebel et al., 2019b), prochloraz (Heise et 
al., 2015, 2018; Vinggaard et al., 2006).  
 

Figure 6: Comparison of relative 
potencies obtained via transcriptomics 
and proteomics (a). The scale bar 
denotes higher or lower RPFs of a 
compound, as compared to another 
compound, in purple and blue, 
respectively. (b) Analysis of correlation of 
transcriptomic and proteomic RPFs. 
Each dot represents the RPF derived at 
the mRNA and protein levels for 
treatment with an individual compound. 
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Nonetheless, the hepatotoxicity marker 
panel presented here contains a substantial 
number of genes or proteins that are not di-
rectly linked to up-regulation by xenobiotic-
activated nuclear receptors; and many of these 
genes show a tendency for regulation in a spe-
cific direction by mechanistically very differ-
ent compounds. This indicates that the respec-
tive genes represent rather general and robust 
markers of hepatocellular stress, both at the 
mRNA and protein level. Responses were 
recorded at non-cytotoxic concentrations in-
dicating a higher sensitivity of these tran-
script-based markers, as compared to classic 
cell vitality or cytotoxicity assays. It should 
be noted that transcriptional classifiers for 
hepatotoxicity have been subject of previous 
research projects, using different cellular 
models and/or test compounds (Grinberg et 
al., 2018; Seeger et al., 2019). Using the total 
degree of deregulation of such non-pathway-
specific hepatocellular toxicity markers as a 
global parameter, it may be possible to esti-
mate the hepatotoxic potential of test com-
pounds in vitro. Therefore, we assessed 
whether the determined in vitro RPFs would 
correlate with the potencies of the compound 
to exert hepatotoxicity in vivo. Here, no pro-
nounced correlation of the in vitro RPFs with 
in vivo LOAELs/NOAELs (no/lowest ob-
served adverse effect levels), the toxicity pa-
rameters classically deduced from in vivo 
studies, was observable. However, that out-
come may rather be expected for different 
reasons: first, the NOAELs and LOAELs bear 
a high level of uncertainty related to study de-
sign. This involves, amongst others, parame-
ters like duration of exposure and the choice 
of dose levels and species. Benchmark ap-
proaches may help to improve the latter issue, 
but one has to bear in mind that such an ap-
proach is not compatible with the dosing 
schemes of many published studies. Of note, 
RPFs and NOAELs/LOAELs derived from 
the same studies do not necessarily show a 
high degree of correlation (EFSA Panel on 
Plant Protection Products and their Residues, 
2009). Second, species differences may exist 

regarding the sensitivity to certain hepatotox-
icants between rodents and humans and there-
fore the predictivity of animal NOAELs/ 
LOAELs for humans may be limited. Of note, 
also the NOAELs/LOAELs of different non-
human species show considerable variance. 
For example, dioxin toxicity is at great vari-
ance between species (Scientic Committee on 
Food, 2000). Species differences are espe-
cially relevant for agonists of nuclear recep-
tors, where often considerable differences be-
tween species are observed. For example, he-
patic effects of exposure to cyproconazole in 
rodents are thought to be mediated by CAR, 
whereas humanization of the receptor in 
transgenic mice drastically diminishes the re-
sponse (Marx-Stoelting et al., 2017). Instead, 
cyproconazole appears to mainly affect hu-
man PXR in vitro (Luckert et al., 2018). Tu-
mor induction by activators of CAR or the pe-
roxisome proliferator-activated receptor 
(PPAR) alpha is frequently observed in ro-
dents, while human relevance of the processes 
occurring downstream these receptors is 
questioned (Graham and Lake, 2008; Hols-
apple et al., 2005). Third, toxicokinetic as-
pects have to be taken into account. In vivo 
dosing can, therefore, not be easily translated 
into in vitro concentrations without having 
proper in vivo-in vitro extrapolation models 
available for the test compounds. Thus, lim-
ited correlation of toxic doses in vivo and re-
sponses in vitro does not necessarily relate to 
shortcomings of a chosen in vitro system and 
detailed inter-species and toxicokinetic 
knowledge of individual compounds is neces-
sary to judge on the correlation of in vitro data 
with the outcome of in vivo toxicity studies. 

However, even if quantitative statements 
about in vivo toxicity remain difficult, the pre-
sent in vitro hepatotoxicity dataset may be 
helpful in a different context: xenobiotic-in-
duced hepatotoxicity may become manifest in 
many different ways, such as hepatic choles-
tasis, steatosis, or hepatocellular necrosis. Fu-
ture analyses will reveal whether the type of 
hepatotoxicity, e.g. steatosis, can be predicted 
using the in vitro hepatotoxicity marker panel. 
Furthermore, the presented approach may be 
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helpful in mixture testing, both with respect to 
qualitative (e.g. will a certain type of hepato-
toxicity be induced by a mixture with suffi-
cient probability but not by the individual 
compounds alone) and quantitative (e.g. is the 
mixture more potent than the sum of the indi-
vidual compounds) aspects. In addition, the 
parameter of total transcriptional deregulation 
can be used in mixture testing, for setting up 
test compound concentrations of a desired po-
tency. 

In summary, the present work illustrates 
the comparability of hepatotoxicity marker 
testing at the mRNA and protein levels in 
HepaRG cells. Cellular responses to 30 differ-
ent pesticides were characterized, providing a 
basis for future analyses of mechanisms of 
their toxicity. Furthermore, a number of ro-
bust hepatotoxicity marker genes and proteins 
were identified in HepaRG cells. 
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