Letter to the Editor:

CALR-Mutations in Myeloproliferative Neoplasms: An Unfolding Story

Stephen E. Langabeer

Cancer Molecular Diagnostics, St. James’s Hospital, Dublin, Ireland
Phone: +353-1-4162413, Fax: +353-1-4103513, E-mail: slangabeer@stjames.ie

http://dx.doi.org/10.17179/excli2020-2985

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

Dear Editor,

The discovery of mutations in **CALR**, the gene that encodes calreticulin, in a significant proportion of patients with the myeloproliferative neoplasms (MPN) of essential thrombocytopenia (ET) and primary myelofibrosis (PMF) drastically altered the molecular landscape of these diseases (Klampfl et al., 2013; Nangalia et al., 2013). The C-terminal of the calreticulin protein includes an endoplasmic reticulum (ER) KDEL retention signal that has a strong calcium-binding capacity thus acting as a calcium storage protein. Additionally, CALR acts as a molecular chaperone enabling glycoprotein folding in the ER. Nearly all mutations of **CALR** are either insertions, deletions or insertion and deletions (indels) that result in a loss of the terminal KDEL signal. Mutant CALR interacts with the thrombopoietin receptor MPL by a unique mechanism resulting in constitutive activation of the downstream JAK-STAT pathway and cellular transformation (Edahiro et al., 2020).

Early studies suggested that **CALR** indel mutations were found inclusively in ET and PMF however expanded screening has uncovered sporadic cases exhibiting a polycythemic phenotype (Broséus et al., 2014; Langabeer et al., 2017). As **CALR** mutations are absent in polycythemia vera (PV; which is defined by the presence of **JAK2** mutations), this most likely represents one end of the phenotypic spectrum of **CALR**-mutated MPN. More recently, mutations in the 3’ untranslated region of **CALR**, an area not covered by conventional diagnostic approaches, have been identified in patients phenotypically resembling PV (Quattrocchi et al., 2020).

A variety of molecular diagnostic platforms exist to detect **CALR** mutations such as capillary electrophoresis, real-time PCR, and increasingly, next-generation sequencing. Both deep sequencing and capillary electrophoresis screening have revealed a complexity of **CALR** mutations as evidenced by co-existing, multiple indels which would not be revealed by use of real-time screening for the most common **CALR** exon 9 indels (Jeromin et al., 2016; Verger et al., 2020).

A further confounding observation is the low frequency of in-frame **CALR** indels that would be predicted to retain the terminal KDEL region in some patients with features hematologically suggestive of an MPN (Szuber et al., 2016; Verger et al., 2020). These in-frame mutations have an allelic frequency of approximately 50 %, hence suggestive of a polymorphism, and although not diagnostic of an MPN, require further functional characterization.
Taken together, these more recent findings further underscore the clonal complexity of CALR-mutated MPN and provide a continuing challenge for improvement of molecular diagnostics algorithms.

Conflict of interest

The author declares no conflict of interest.

REFERENCES

