Letter to the editor

Recent insights into the biological functions of baicalin

Priscilla Nadalin1, Jae Kwang Kim2, Tae Won Kim3, Sang Un Park1[*]

1Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea

2Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea

3College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea

EXCLI J 2022;21:Doc1019

 

Flavonoids are molecules possessing a 15-carbon skeleton structure consisting of two aromatic ring systems (A and B rings) and a heterocyclic ring (C). This carbon backbone can be shortened to C6-C3-C6 (Kumar and Pandey, 2013[20]). Flavonoids can be sorted into different subgroups, based on the degree of unsaturation and substitution patterns, consisting of anthocyanins, catechins, chalcone flavanols, flavanones, flavones, flavanonols, flavonols, and isoflavonoids (Santos-Buelga and Feliciano, 2017[38]).

Flavones (from the Latin term flavus meaning "yellow") belong to the group of flavonoids that share a 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one) backbone, and are secondary metabolites commonly present in plants and fungi, and are naturally yellow-colored (Panche et al., 2016[34]; Kumar and Pandey, 2013[20]).

Baicalin, a flavone glycoside, is one of the most important bioactive compounds in Scutellaria radix (the dry raw root of Scutellaria baicalensis), which is among the 50 essential herbs used in traditional Chinese medicine (Liang et al., 2017[26]). Baicalin is a 7-O-glucuronide derivative of baicalein, and its synthesis is catalyzed by baicalein 7-O-glucuronosyltransferase in S. baicalensis (Nagashima et al., 2000[32]).

It has been reported effective in exerting several pharmacological activities, namely antibacterial, antiviral, anticancer, anticonvulsant, anti-inflammatory, antioxidant, hepatoprotective, and neuroprotective effects (Cui et al., 2022[5]; Wang et al., 2022[51]; Li et al., 2021[24]; Pan et al., 2021[33]). The pharmacological properties of baicalin are attributed to its ability to scavenge reactive oxygen species (ROS) and interact with several signaling molecules related to apoptosis, autophagy, cell cycle, cytoprotection, inflammation, and mitochondrial dynamics (Hu et al., 2022[14]). The therapeutic potential of baicalin warrants further studies as a natural treatment for various human diseases. Here, we report current findings on baicalin's biological properties and pharmacological activities (Table 1(Tab. 1); References in Table 1: Ai et al., 2022[1]; Cai et al., 2022[2]; Changle et al., 2022[3]; Chen et al., 2021[4]; Dou et al., 2020[6]; Fan et al., 2021[8], 2022[7]; Fang et al., 2020[9], 2022[10]; Fu et al., 2020[11]; Hao et al., 2021[12]; He et al., 2022[13]; Huang et al., 2020[15]; Ishfaq et al., 2021[16]; Ji et al., 2022[17]; Jia et al., 2021[18]; Kong et al., 2021[19]; Kunimatsu et al., 2022[21]; Li and Tang, 2021[23]; Li et al., 2020[25], 2022[22]; Lin et al., 2020[27], 2022[28]; Liu et al., 2020[29]; Ma et al., 2021[30]; Miao et al., 2021[31]; Paudel and Kim, 2020[35]; Peng et al., 2021[36]; Rizzo et al., 2021[37]; Shah et al., 2020[39]; Shehatta et al., 2022[40]; Shi et al., 2020[41]; Song et al., 2022[42]; Su et al., 2021[43]; Sui et al., 2021[44]; Sun et al., 2021[46], 2022[45]; Tan et al., 2021[47]; Tsai et al., 2021[48]; Wang et al., 2020[50], 2021[49]; Wu et al., 2020[53], 2021[52]; Xiang et al., 2021[54]; Xiao et al., 2021[55]; Xu et al., 2020[56]; Yang et al., 2020[57], 2022[58]; Yoshida et al., 2021[59]; You et al., 2022[60]; Yu et al., 2022[61]; Zeng et al., 2020[62]; Zhang et al., 2020[64], 2021[63]; Zhao et al., 2021[65]; Zhen et al., 2021[66]; Zou et al., 2021[67]).

Notes

Priscilla Nadalin and Jae Kwang Kim contributed equally as first author.

Declaration

Acknowledgments

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) & funded by the Korean government (MSIT) (No. 2022M3E5E6018649). First author would like to express her deepest gratitude to the Korean Government (GKS-G-2020-393) for providing funding for her PhD studies.

Conflict of interest

The authors declare no conflict of interest.

 

References

1. Ai RS, Xing K, Deng X, Han JJ, Hao DX, Qi WH, et al. Baicalin promotes CNS remyelination via PPARγ signal pathway. Neurol Neuroimmunol Neuroinflamm. 2022;9(2):e1142
2. Cai X, Shi Y, Dai Y, Wang F, Chen X, Li X. Baicalin clears inflammation by enhancing macrophage efferocytosis via inhibition of RhoA/ROCK signaling pathway and regulating macrophage polarization. Int Immunopharmacol. 2022;105:108532
3. Changle Z, Cuiling F, Feng F, Xiaoqin Y, Guishu W, Liangtian S, et al. Baicalin inhibits inflammation of lipopolysaccharide-induced acute lung injury via toll like receptor-4/myeloid differentiation primary response 88/nuclear factor-kappa B signaling pathway. J Tradit Chin Med. 2022;42(2):200
4. Chen J, Yuan CB, Yang B, Zhou X. Baicalin inhibits EMT through PDK1/AKT signaling in human nonsmall cell lung cancer. J Oncol. 2021;2021:4391581
5. Cui L, Yuan T, Zeng Z, Liu D, Liu C, Guo J, et al. Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomed Pharmacother. 2022;151:113191
6. Dou Y, Shang Y, Shen Y, Qu J, Liu C, Cao J. Baicalin alleviates adriamycin-induced focal segmental glomerulosclerosis and proteinuria by inhibiting the Notch1-Snail axis mediated podocyte EMT. Life Sci. 2020;257:118010
7. Fan H, He J, Bai Y, He Q, Zhang T, Zhang J, et al. Baicalin improves the functions of granulosa cells and the ovary in aged mice through the mTOR signaling pathway. J Ovarian Res. 2022;15(1):34
8. Fan Z, Cai L, Wang S, Wang J, Chen B. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol. 2021;12:628988
9. Fang F, Xie Z, Quan J, Wei X, Wang L, Yang L. Baicalin suppresses Propionibacterium acnes-induced skin inflammation by downregulating the NF-κB/MAPK signaling pathway and inhibiting activation of NLRP3 inflammasome. Braz J Med Biol Res. 2020;53(12):e9949
10. Fang L, Wang HF, Chen YM, Bai RX, Du SY. Baicalin confers hepatoprotective effect against alcohol-associated liver disease by upregulating microRNA-205. Int Immunopharmacol. 2022;107:108553
11. Fu S, Yin R, Zuo S, Liu J, Zhang Y, Guo L, et al. The effects of baicalin on piglets challenged with Glaesserella parasuis. Vet Res. 2020;51(1):102
12. Hao D, Li Y, Shi J, Jiang J. Baicalin alleviates chronic obstructive pulmonary disease through regulation of HSP72-mediated JNK pathway. Mol Med. 2021;27(1):53
13. He Q, Sun X, Zhang M, Chu L, Zhao Y, Wu Y, et al. Protective effect of baicalin against arsenic trioxide-induced acute hepatic injury in mice through JAK2/STAT3 signaling pathway. Int J Immunopathol Pharmacol. 2022;36:20587384211073397
14. Hu Z, Guan Y, Hu W, Xu Z, Ishfaq M. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. Iran J Basic Med Sci. 2022;25:14-26
15. Huang LJ, Jia SS, Sun XH, Li XY, Wang FF, Li W, et al. Baicalin relieves neuropathic pain by regulating α2‑adrenoceptor levels in rats following spinal nerve injury. Exp Ther Med. 2020;20:2684-90
16. Ishfaq M, Wu Z, Wang J, Li R, Chen C, Li J. Baicalin alleviates Mycoplasma gallisepticum-induced oxidative stress and inflammation via modulating NLRP3 inflammasome-autophagy pathway. Int Immunopharmacol. 2021;101(Pt B):108250
17. Ji W, Huo Y, Zhang Y, Wang X, Zhang Y. Revealing therapeutic targets and mechanism of baicalin for anti-chronic gastritis using proteomic analysis of the gastric tissue. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;1196:123214
18. Jia R, Du J, Cao L, Feng W, Xu P, Yin G. Effects of dietary baicalin supplementation on growth performance, antioxidative status and protection against oxidative stress-induced liver injury in GIFT tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol. 2021;240:108914
19. Kong N, Chen X, Feng J, Duan T, Liu S, Sun X, et al. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B. 2021;11:4045-54
20. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal. 2013;2013:162750
21. Kunimatsu R, Kimura A, Sakata S, Tsuka Y, Yoshimi Y, Abe T, et al. Effects of baicalin on the proliferation and expression of OPG and RANKL in human cementoblast-lineage cells. J Dent Sci. 2022;17:162-9
22. Li H, Cong X, Sui J, Jiang Z, Fu K, Huan Y, et al. Baicalin enhances the thermotolerance of mouse blastocysts by activating the ERK1/2 signaling pathway and preventing mitochondrial dysfunction. Theriogenology. 2022;178:85-94
23. Li H, Tang S. Baicalin attenuates diet-induced obesity partially through promoting thermogenesis in adipose tissue. Obes Res Clin Pract. 2021;15:485-90
24. Li K, Liang Y, Cheng A, Wang Q, Li Y, Wei H, et al. Antiviral properties of baicalin: A concise review. Rev Bras Farmacogn. 2021;31:408-19
25. Li Y, Liu T, Li Y, Han D, Hong J, Yang N, et al. Baicalin ameliorates cognitive impairment and protects microglia from LPS-induced neuroinflammation via the SIRT1/HMGB1 pathway. Oxid Med Cell Longev. 2020;2020:4751349
26. Liang W, Huang X, Chen W. The effects of baicalin and baicalein on cerebral ischemia: a review. Aging Dis. 2017;8:850-67
27. Lin P, Guo XX, Wang YL, Wei ZL, Xin HY, Liu TB. Inhibitory effect of baicalin on orthodontically induced inflammatory root resorption in rats. J Int Med Res. 2020;48(9):0300060520955070
28. Lin Y, Wang ZY, Wang MJ, Jiang ZM, Qin YQ, Huang TQ, et al. Baicalin attenuate diet-induced metabolic syndrome by improving abnormal metabolism and gut microbiota. Eur J Pharmacol. 2022;925:174996
29. Liu Y, Xiong M, Zhou F, Shi N, Jia Y. Effect of baicalin on gestational hypertension-induced vascular endothelial cell damage. J Int Med Res. 2020;48(10):0300060520934288
30. Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway. Drug Des Devel Ther. 2021;15:3207-21
31. Miao Y, Ishfaq M, Liu Y, Wu Z, Wang J, Li R, et al. Baicalin attenuates endometritis in a rabbit model induced by infection with Escherichia coli and Staphylococcus aureus via NF-κB and JNK signaling pathways. Domest Anim Endocrinol. 2021;74:106508
32. Nagashima S, Hirotani M, Yoshikawa T. Purification and characterization of UDP-glucuronate: baicalein 7-O-glucuronosyltransferase from Scutellaria baicalensis Georgi. cell suspension cultures. Phytochemistry. 2000;53:533-8
33. Pan L, Cho KS, Yi I, To CH, Chen DF, Do CW. Baicalein, baicalin, and wogonin: protective effects against ischemia-induced neurodegeneration in the brain and retina. Oxid Med Cell Longev. 2021;2021:8377362
34. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47
35. Paudel KR, Kim DW. Microparticles-mediated vascular inflammation and its amelioration by antioxidant activity of baicalin. Antioxidants. 2020;9(9):890
36. Peng LY, Shi HT, Tan YR, Shen SY, Yi PF, Shen HQ, et al. Baicalin inhibits APEC-induced lung injury by regulating gut microbiota and SCFA production. Food Funct. 2021;12:12621-33
37. Rizzo V, Ferlazzo N, Currò M, Isola G, Matarese M, Bertuccio MP, et al. Baicalin-induced autophagy preserved LPS-stimulated intestinal cells from inflammation and alterations of paracellular permeability. Int J Mol Sci. 2021;22(5):2315
38. Santos-Buelga C, Feliciano AS. Flavonoids: from structure to health issues. Molecules. 2017;22(3):477
39. Shah MA, Park DJ, Kang JB, Kim MO, Koh PO. Baicalin alleviates lipopolysaccharide-induced neuroglial activation and inflammatory factors activation in hippocampus of adult mice. Lab Anim Res. 2020;36:32
40. Shehatta NH, Okda TM, Omran GA, Abd-Alhaseeb MM. Baicalin;a promising chemopreventive agent, enhances the antitumor effect of 5-FU against breast cancer and inhibits tumor growth and angiogenesis in Ehrlich solid tumor. Biomed Pharmacother. 2022;146:112599
41. Shi L, Zhang S, Huang Z, Hu F, Zhang T, Wei M, et al. Baicalin promotes liver regeneration after acetaminophen-induced liver injury by inducing NLRP3 inflammasome activation. Free Radic Biol Med. 2020;160:163-77
42. Song Z, He C, Yu W, Yang M, Li Z, Li P, et al. Baicalin attenuated Aβ1-42-induced apoptosis in SH-SY5Y cells by inhibiting the Ras-ERK signaling pathway. BioMed Res Int. 2022;2022:9491755
43. Su L, Wang R, Qiu T, Wang J, Meng J, Zhu J, et al. The protective effect of baicalin on duck hepatitis A virus type 1-induced duck hepatic mitochondria dysfunction by activating nuclear erythroid 2-related factor 2/antioxidant responsive element signaling pathway. Poult Sci. 2021;100(5):101032
44. Sui X, Han X, Chen P, Wu Q, Feng J, Duan T, et al. Baicalin induces apoptosis and suppresses the cell cycle progression of lung cancer cells through downregulating Akt/mTOR signaling pathway. Front Mol Biosci. 2021;7:602282
45. Sun X, Pisano M, Xu L, Sun F, Xu J, Zheng W, et al. Baicalin regulates autophagy to interfere with small intestinal acute graft-versus-host disease. Sci Rep. 2022;12(1):6551
46. Sun X, Wang X, He Q, Zhang M, Chu L, Zhao Y, et al. Investigation of the ameliorative effects of baicalin against arsenic trioxide-induced cardiac toxicity in mice. Int Immunopharmacol. 2021;99:108024
47. Tan N, Sun CX, Zhu HJ, Li DY, Huang SG, He SD. Baicalin attenuates adriamycin-induced nephrotic syndrome by regulating fibrosis procession and inflammatory reaction. Genes Genomics. 2021;43:1011-21
48. Tsai CL, Tsai CW, Chang WS, Lin JC, Hsia TC, Bau DT. Protective effects of baicalin on arsenic trioxide-induced oxidative damage and apoptosis in human umbilical vein endothelial cells. In Vivo. 2021;35:155-62
49. Wang P, Liu J, Zhang S, Zhu P, Xiong X, Yu C, et al. Baicalin promotes chondrocyte viability and the synthesis of extracellular matrix through TGF-β/Smad3 pathway in chondrocytes. Am J Transl Res. 2021;13:10908-21
50. Wang P, Zhu P, Liu R, Meng Q, Li S. Baicalin promotes extracellular matrix synthesis in chondrocytes via the activation of hypoxia‑inducible factor‑1α. Exp Ther Med. 2020;20(6):226
51. Wang X, Xie L, Long J, Liu K, Lu J, Liang Y, et al. Therapeutic effect of baicalin on inflammatory bowel disease: a review. J Ethnopharmacol. 2022;283:114749
52. Wu J, Chen H, Qin J, Chen N, Lu S, Jin J, et al. Baicalin improves cardiac outcome and survival by suppressing Drp1-mediated mitochondrial fission after cardiac arrest-induced myocardial damage. Oxid Med Cell Longev. 2021;2021:8865762
53. Wu Z, Fan Q, Miao Y, Tian E, Ishfaq M, Li J. Baicalin inhibits inflammation caused by coinfection of Mycoplasma gallisepticum and Escherichia coli involving IL-17 signaling pathway. Poult Sci. 2020;99:5472-80
54. Xiang H, Lei H, Liu Z, Liu Y, Li Y, Qiu Y, et al. Network pharmacology and molecular docking analysis on molecular targets: Mechanisms of baicalin and baicalein against hyperuricemic nephropathy. Toxicol Appl Pharmacol. 2021;424:115594
55. Xiao Z, Cao Z, Yang J, Jia Z, Du Y, Sun G, et al. Baicalin promotes hippocampal neurogenesis via the Wnt/β-catenin pathway in a chronic unpredictable mild stress-induced mouse model of depression. Biochem Pharmacol. 2021;190:114594
56. Xu M, Li X, Song L. Baicalin regulates macrophages polarization and alleviates myocardial ischaemia/reperfusion injury via inhibiting JAK/STAT pathway. Pharm Biol. 2020;58:655-63
57. Yang F, Feng C, Yao Y, Qin A, Shao H, Qian K. Antiviral effect of baicalin on Marek’s disease virus in CEF cells. BMC Vet Res. 2020;16(1):371
58. Yang M, Zhu X, Fu F, Guo Q, Zhu X, Xu Y, et al. Baicalin ameliorates inflammatory response in a mouse model of rhinosinusitis via regulating the Treg/Th17 balance. Ear Nose Throat J. 2022;101(2S):8S-16S
59. Yoshida K, Takabayashi T, Kaneko A, Takiyama M, Sakashita M, Imoto Y, et al. Baicalin suppresses type 2 immunity through breaking off the interplay between mast cell and airway epithelial cell. J Ethnopharmacol. 2021;267:113492
60. You J, Li H, Fan P, Yang X, Wei Y, Zheng L, et al. Inspiration for COVID-19 treatment: network analysis and experimental validation of baicalin for cytokine storm. Front Pharmacol. 2022;13:853496
61. Yu HY, Zhu Y, Zhang XL, Wang L, Zhou YM, Zhang FF, et al. Baicalin attenuates amyloid β oligomers induced memory deficits and mitochondria fragmentation through regulation of PDE-PKA-Drp1 signalling. Psychopharmacology. 2022;239:851-65
62. Zeng A, Liang X, Zhu S, Liu C, Luo X, Zhang Q, et al. Baicalin, a potent inhibitor of NF-κB signaling pathway, enhances chemosensitivity of breast cancer cells to docetaxel and inhibits tumor growth and metastasis both in vitro and in vivo. Front Pharmacol. 2020;11:879
63. Zhang W, Liu Q, Luo L, Song J, Han K, Liu R, et al. Use Chou's 5-steps rule to study how Baicalin suppresses the malignant phenotypes and induces the apoptosis of colorectal cancer cells. Arch Biochem Biophys. 2021;705:108919
64. Zhang XT, Wang G, Ye LF, Pu Y, Li RT, Liang J, et al. Baicalin reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal injury in type 1 diabetic mouse model. Cell Cycle. 2020;19:3329-47
65. Zhao ZF, Zhang Y, Sun Y, Zhang CH, Liu MW. Protective effects of baicalin on caerulein-induced AR42J pancreatic acinar cells by attenuating oxidative stress through miR-136-5p downregulation. Sci Prog. 2021;104(2):00368504211026118
66. Zhen J, Chen W, Liu Y, Zang X. Baicalin protects against acute pancreatitis involving JNK signaling pathway via regulating miR-15a. Am J Chin Med. 2021;49:147-61
67. Zou M, Yang L, Niu L, Zhao Y, Sun Y, Fu Y, et al. Baicalin ameliorates Mycoplasma gallisepticum-induced lung inflammation in chicken by inhibiting TLR6-mediated NF-κB signalling. Br Poult Sci. 2021;62:199-210
 
 
 

Table 1: Recent studies on the biological and pharmacological activities of baicalin

[*] Corresponding Author:

Sang Un Park, Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea; Tel.: +82-42-821-5730, Fax: +82-42-822-2631, eMail: supark@cnu.ac.kr