This is code for and the results of analysis included in the manuscript:

Link to OSF:

1. Loading and installing all needed packages

# Clear the environment
rm(list = ls())

# Function to check, install (if necessary), and load the required packages
load_required_packages <- function(packages) {
  
  # Function to install and load a package
  install_and_load <- function(package) {
    if (!require(package, character.only = TRUE)) {
      install.packages(package, dependencies = TRUE)
      library(package, character.only = TRUE)
    }
  }
  
  # Iterate through the list of packages and install/load them
  sapply(packages, install_and_load)
}

# List of required packages
packages <- c("metafor" 
,"robumeta"
,"ggplot2"
,"readxl"
,"clubSandwich",
"esc",
"robvis")



# Call the function to install and load the required packages
load_required_packages(packages)
## Ładowanie wymaganego pakietu: metafor
## Warning: pakiet 'metafor' został zbudowany w wersji R 4.3.3
## Ładowanie wymaganego pakietu: Matrix
## Warning: pakiet 'Matrix' został zbudowany w wersji R 4.3.3
## Ładowanie wymaganego pakietu: metadat
## Ładowanie wymaganego pakietu: numDeriv
## 
## Loading the 'metafor' package (version 4.6-0). For an
## introduction to the package please type: help(metafor)
## Ładowanie wymaganego pakietu: robumeta
## Warning: pakiet 'robumeta' został zbudowany w wersji R 4.3.3
## Ładowanie wymaganego pakietu: ggplot2
## Warning: pakiet 'ggplot2' został zbudowany w wersji R 4.3.3
## Ładowanie wymaganego pakietu: readxl
## Warning: pakiet 'readxl' został zbudowany w wersji R 4.3.3
## Ładowanie wymaganego pakietu: clubSandwich
## Warning: pakiet 'clubSandwich' został zbudowany w wersji R 4.3.3
## Registered S3 method overwritten by 'clubSandwich':
##   method    from    
##   bread.mlm sandwich
## Ładowanie wymaganego pakietu: esc
## Ładowanie wymaganego pakietu: robvis
## Warning: pakiet 'robvis' został zbudowany w wersji R 4.3.3
## $metafor
## NULL
## 
## $robumeta
## NULL
## 
## $ggplot2
## NULL
## 
## $readxl
## NULL
## 
## $clubSandwich
## NULL
## 
## $esc
## NULL
## 
## $robvis
## NULL

2. Loading data

### set working directory
setwd("C:/Users/macbe/OneDrive/Behnke Dropbox/MA CHT")

#import and store data from excel file
Data <- read_excel("C:/Users/macbe/OneDrive/Behnke Dropbox/MA CHT/Data.xlsx", sheet = "coding")
## New names:
## • `title` -> `title...5`
## • `title` -> `title...8`
## • `` -> `...31`
#View(Data)

Data <- as.data.frame(Data)

#drop non numeric data
#Data <- Data2 %>% select(-c(Date_Lab1,
 #                                   
  #                                  ))

3. Risk of bias

## New names:
## • `` -> `...1`
## # A tibble: 5 × 7
##   Study `Randomisation process` Deviations from intende…¹ `Missing outcome data`
##   <chr> <chr>                   <chr>                     <chr>                 
## 1 2     Low                     Low                       Low                   
## 2 4     Low                     Low                       Low                   
## 3 14    Low                     Low                       Low                   
## 4 15    Low                     Low                       Low                   
## 5 55    Low                     Low                       Low                   
## # ℹ abbreviated name: ¹​`Deviations from intended interventions`
## # ℹ 3 more variables: `Measurement of the outcome` <chr>,
## #   `Selection of the reported result` <chr>, Overall <chr>
## Warning in ggplot2::geom_point(shape = 1, colour = "black", size = psize, : All aesthetics have length 1, but the data has 30 rows.
## ℹ Please consider using `annotate()` or provide this layer with data containing
##   a single row.
## png 
##   2
## New names:
## • `` -> `...1`
## # A tibble: 6 × 8
##   Study Selection of participant…¹ Confounding variable…² Measurement of expos…³
##   <chr> <chr>                      <chr>                  <chr>                 
## 1 1     Low                        Low                    Low                   
## 2 3     Low                        Low                    Low                   
## 3 5     Low                        Low                    Low                   
## 4 6     Low                        Low                    Low                   
## 5 7     <NA>                       <NA>                   <NA>                  
## 6 8     Low                        Low                    Low                   
## # ℹ abbreviated names: ¹​`Selection of participants`, ²​`Confounding variables`,
## #   ³​`Measurement of exposure`
## # ℹ 4 more variables: `Blinding of outcome assessments` <chr>,
## #   `Incomplete outcome data` <chr>, `Selective outcome reporting` <chr>,
## #   Overall <chr>
## Warning in ggplot2::geom_point(shape = 1, colour = "black", size = psize, : All aesthetics have length 1, but the data has 399 rows.
## ℹ Please consider using `annotate()` or provide this layer with data containing
##   a single row.
## Warning: Removed 14 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Removed 14 rows containing missing values or values outside the scale range
## (`geom_point()`).
## png 
##   2

4. Preparing the data

#z-transform correlation coefficients
Data$CO_cor_Z <- .5 * log((1+Data$CO_cor)/(1-Data$CO_cor))
Data$TPR_cor_Z <- .5 * log((1+Data$TPR_cor)/(1-Data$TPR_cor))
Data$CTI_cor_Z <- .5 * log((1+Data$CTI_cor)/(1-Data$CTI_cor))
Data$Cogni_cor_Z <- .5 * log((1+Data$Cogni_cor)/(1-Data$Cogni_cor))


# calculate z variance
Data$CO_cor_Z_var <- ifelse(is.na(Data$CO_cor), NA, 1 / (Data$n_performance - 3))
Data$TPR_cor_Z_var <- ifelse(is.na(Data$TPR_cor), NA, 1 / (Data$n_performance - 3))
Data$CTI_cor_Z_var <- ifelse(is.na(Data$CTI_cor), NA, 1 / (Data$n_performance - 3))
Data$Cogni_cor_Z_var <- ifelse(is.na(Data$Cogni_cor), NA, 1 / (Data$n_performance - 3))

# calculate z variance squared
Data$CO_cor_Z_var_Sq <- ifelse(is.na(Data$CO_cor), NA, (1 / (Data$n_performance - 3))^2)
Data$TPR_cor_Z_var_Sq <- ifelse(is.na(Data$TPR_cor), NA, (1 / (Data$n_performance - 3))^2)
Data$CTI_cor_Z_var_Sq <- ifelse(is.na(Data$CTI_cor), NA, (1 / (Data$n_performance - 3))^2)
Data$Cogni_cor_Z_var_Sq <- ifelse(is.na(Data$Cogni_cor), NA, (1 / (Data$n_performance - 3))^2)

5. Cardiac Output

5.1 Identyfing outliers

# model for outlier analyses and funnel plots
model_fun_CO <- rma(yi = CO_cor_Z, vi= CO_cor_Z_var, data = Data, slab = Ref_APA)
## Warning: 94 studies with NAs omitted from model fitting.
model_fun_CO
## 
## Random-Effects Model (k = 68; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0216 (SE = 0.0070)
## tau (square root of estimated tau^2 value):      0.1470
## I^2 (total heterogeneity / total variability):   72.40%
## H^2 (total variability / sampling variability):  3.62
## 
## Test for Heterogeneity:
## Q(df = 67) = 151.6929, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub    
##   0.0473  0.0251  1.8842  0.0595  -0.0019  0.0964  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# outliers diagnostics  - outlier rstudent > 3.0 #
Out_model_fun_CO <- influence(model_fun_CO)
Out_model_fun_CO
## 
##                                 rstudent  dffits cook.d  cov.r tau2.del 
## Arthur et al., 2019.1             1.0347  0.0898 0.0081 1.0076   0.0216 
## Arthur et al., 2019.2             2.2513  0.1821 0.0327 0.9729   0.0203 
## Arthur et al., 2019.3             0.1791  0.0165 0.0003 1.0164   0.0219 
## Baumgartner & Schneider, 2023    -0.9394 -0.1317 0.0174 1.0218   0.0217 
## Behnke et al., 2020.1            -0.1463 -0.0169 0.0003 1.0421   0.0225 
## Behnke et al., 2020.2             0.5616  0.0789 0.0063 1.0355   0.0222 
## Behnke et al., 2022               0.1511  0.0295 0.0009 1.0638   0.0229 
## Behnke et al., 2024.1            -0.4481 -0.0716 0.0054 1.0577   0.0227 
## Behnke et al., 2024.2             0.0193  0.0079 0.0001 1.0656   0.0230 
## Brimmell et al., 2019             2.9532  0.3154 0.0902 0.8960   0.0172 
## Crowe et al., 2020.1             -0.1674 -0.0169 0.0003 1.0291   0.0222 
## Crowe et al., 2020.2             -0.8044 -0.0907 0.0083 1.0183   0.0218 
## Crowe et al., 2020.3              0.2848  0.0345 0.0012 1.0285   0.0222 
## Crowe et al., 2020.4             -0.4836 -0.0534 0.0029 1.0255   0.0221 
## Crowe et al., 2020.5              0.5611  0.0655 0.0043 1.0248   0.0220 
## Gurera & Isaacowitz, 2022.1       0.9151  0.1228 0.0151 1.0222   0.0218 
## Gurera & Isaacowitz, 2022.3      -0.5247 -0.0613 0.0038 1.0276   0.0221 
## Hangen et al., 2019.1            -0.0442 -0.0028 0.0000 1.0571   0.0228 
## Hangen et al., 2019.2             0.1425  0.0264 0.0007 1.0567   0.0228 
## Hase et al., 2019.1              -1.3587 -0.1669 0.0275 0.9981   0.0210 
## Hase et al., 2019.2              -1.1428 -0.1379 0.0189 1.0081   0.0214 
## Hase et al., 2019.3              -0.3883 -0.0451 0.0021 1.0307   0.0222 
## Hase et al., 2019.4              -0.1056 -0.0102 0.0001 1.0328   0.0223 
## Hase et al., 2019.5              -0.7552 -0.0961 0.0093 1.0252   0.0219 
## Hase et al., 2019.6              -1.1732 -0.1523 0.0230 1.0078   0.0213 
## Hase et al., in preparation.3    -1.1650 -0.1260 0.0158 1.0057   0.0214 
## Hase et al., in preparation.4    -1.4301 -0.1537 0.0234 0.9957   0.0210 
## Hase et al., in preparation.5    -0.2418 -0.0240 0.0006 1.0251   0.0221 
## Hase et al., in preparation.6    -0.7622 -0.0814 0.0066 1.0175   0.0218 
## Hase et al., in preparation.7     0.0968  0.0123 0.0002 1.0261   0.0222 
## Hase et al., in preparation.8    -0.1995 -0.0194 0.0004 1.0255   0.0221 
## Hase et al., in preparation.9     1.5401  0.1587 0.0249 0.9932   0.0209 
## Hase et al., in preparation.10   -1.0385 -0.1083 0.0117 1.0093   0.0215 
## Hase et al., in preparation.11   -0.0297 -0.0012 0.0000 1.0250   0.0221 
## Hase et al., in preparation.12    0.0117  0.0031 0.0000 1.0250   0.0221 
## Hase et al., in preparation.13   -0.4023 -0.0405 0.0017 1.0225   0.0220 
## Hase et al., in preparation.14   -0.1952 -0.0186 0.0003 1.0244   0.0221 
## Jewiss et al., 2023 (Study 1)     1.4804  0.1636 0.0264 0.9948   0.0209 
## Jewiss et al., 2023 (Study 2).1   1.3558  0.1530 0.0232 1.0003   0.0211 
## Jewiss et al., 2023 (Study 2).2  -0.4416 -0.0489 0.0024 1.0265   0.0221 
## Jewiss et al., 2023 (Study 2).3  -0.1687 -0.0172 0.0003 1.0296   0.0222 
## Jewiss et al., 2023 (Study 2).4   0.8033  0.0930 0.0087 1.0197   0.0218 
## Jewiss et al., 2023 (Study 2).5   0.4719  0.0560 0.0032 1.0267   0.0221 
## Jewiss et al., 2023 (Study 2).6   0.1952  0.0246 0.0006 1.0297   0.0222 
## Jewiss et al., 2023 (Study 2).7   0.6598  0.0770 0.0060 1.0232   0.0220 
## Jewiss et al., 2023 (Study 2).8   0.3791  0.0455 0.0021 1.0280   0.0222 
## Jewiss et al., 2024              -0.3899 -0.0422 0.0018 1.0265   0.0221 
## Khalaf et al., 2020.1             0.2996  0.0459 0.0022 1.0447   0.0225 
## Khalaf et al., 2020.2             0.3568  0.0539 0.0030 1.0438   0.0225 
## Moore et al., 2017                1.0957  0.1549 0.0239 1.0157   0.0214 
## O'Brien et al., 2022             -0.8356 -0.1052 0.0111 1.0217   0.0218 
## Petzel & Casad, 2022.1            5.0892  0.5536 0.1822 0.5913   0.0068 
## Petzel & Casad, 2022.2           -0.7755 -0.1015 0.0104 1.0258   0.0219 
## Sammy et al., 2017               -0.9385 -0.1166 0.0136 1.0172   0.0217 
## Smith et al., 2022.1             -1.4556 -0.1630 0.0262 0.9942   0.0209 
## Smith et al., 2022.2             -1.6612 -0.1866 0.0341 0.9845   0.0205 
## Smith et al., 2022.3             -2.4387 -0.2758 0.0720 0.9385   0.0188 
## Snijdewint & Scheepers, 2023     -0.2693 -0.0357 0.0013 1.0459   0.0225 
## Trotman et al., 2018.2            1.4593  0.1946 0.0368 0.9934   0.0207 
## Wood et al., 2018                -0.4982 -0.0533 0.0029 1.0235   0.0220 
## Scheepers & Keller, 2022          0.3503  0.0557 0.0032 1.0483   0.0226 
## Bosshard et al., 2023.2           0.3202  0.0523 0.0028 1.0508   0.0226 
## Simms, 2022.1                     0.5999  0.0668 0.0045 1.0221   0.0220 
## Simms, 2022.2                    -1.1956 -0.1307 0.0170 1.0048   0.0213 
## Simms, 2022.3                    -0.3677 -0.0384 0.0015 1.0249   0.0221 
## Simms, 2022.4                     1.1624  0.1256 0.0157 1.0074   0.0214 
## Simms, 2022.5                    -0.4457 -0.0470 0.0022 1.0239   0.0221 
## Simms, 2022.6                     0.0382  0.0062 0.0000 1.0273   0.0222 
##                                   QE.del    hat weight    dfbs inf 
## Arthur et al., 2019.1           150.1654 0.0075 0.7478  0.0898     
## Arthur et al., 2019.2           144.9198 0.0071 0.7125  0.1839     
## Arthur et al., 2019.3           151.6335 0.0071 0.7125  0.0165     
## Baumgartner & Schneider, 2023   149.3719 0.0194 1.9370 -0.1317     
## Behnke et al., 2020.1           151.6685 0.0184 1.8358 -0.0169     
## Behnke et al., 2020.2           150.6638 0.0184 1.8358  0.0790     
## Behnke et al., 2022             150.2281 0.0280 2.8039  0.0299     
## Behnke et al., 2024.1           141.1102 0.0286 2.8567 -0.0723     
## Behnke et al., 2024.2           151.1877 0.0286 2.8567  0.0080     
## Brimmell et al., 2019           136.7619 0.0133 1.3313  0.3193     
## Crowe et al., 2020.1            151.6656 0.0127 1.2737 -0.0169     
## Crowe et al., 2020.2            150.6703 0.0127 1.2737 -0.0907     
## Crowe et al., 2020.3            151.5005 0.0127 1.2737  0.0345     
## Crowe et al., 2020.4            151.3490 0.0127 1.2737 -0.0533     
## Crowe et al., 2020.5            151.0422 0.0127 1.2737  0.0654     
## Gurera & Isaacowitz, 2022.1     149.3577 0.0175 1.7526  0.1228     
## Gurera & Isaacowitz, 2022.3     151.2458 0.0142 1.4188 -0.0612     
## Hangen et al., 2019.1           151.6911 0.0247 2.4731 -0.0028     
## Hangen et al., 2019.2           151.4071 0.0247 2.4731  0.0266     
## Hase et al., 2019.1             148.3503 0.0145 1.4511 -0.1671     
## Hase et al., 2019.2             149.3862 0.0142 1.4188 -0.1379     
## Hase et al., 2019.3             151.4593 0.0145 1.4511 -0.0450     
## Hase et al., 2019.4             151.6859 0.0142 1.4188 -0.0102     
## Hase et al., 2019.5             150.5634 0.0163 1.6315 -0.0961     
## Hase et al., 2019.6             148.8804 0.0163 1.6315 -0.1523     
## Hase et al., in preparation.3   149.6406 0.0114 1.1448 -0.1261     
## Hase et al., in preparation.4   148.6173 0.0112 1.1214 -0.1541     
## Hase et al., in preparation.5   151.6273 0.0112 1.1214 -0.0240     
## Hase et al., in preparation.6   150.8412 0.0114 1.1448 -0.0813     
## Hase et al., in preparation.7   151.6619 0.0112 1.1214  0.0123     
## Hase et al., in preparation.8   151.6520 0.0112 1.1214 -0.0194     
## Hase et al., in preparation.9   147.7581 0.0110 1.0973  0.1592     
## Hase et al., in preparation.10  150.1305 0.0107 1.0725 -0.1083     
## Hase et al., in preparation.11  151.6927 0.0107 1.0725 -0.0012     
## Hase et al., in preparation.12  151.6886 0.0107 1.0725  0.0031     
## Hase et al., in preparation.13  151.4854 0.0107 1.0725 -0.0404     
## Hase et al., in preparation.14  151.6548 0.0107 1.0725 -0.0186     
## Jewiss et al., 2023 (Study 1)   147.7007 0.0125 1.2535  0.1639     
## Jewiss et al., 2023 (Study 2).1 148.2297 0.0129 1.2933  0.1532     
## Jewiss et al., 2023 (Study 2).2 151.4083 0.0129 1.2933 -0.0488     
## Jewiss et al., 2023 (Study 2).3 151.6648 0.0129 1.2933 -0.0171     
## Jewiss et al., 2023 (Study 2).4 150.4054 0.0129 1.2933  0.0929     
## Jewiss et al., 2023 (Study 2).5 151.2130 0.0129 1.2933  0.0559     
## Jewiss et al., 2023 (Study 2).6 151.5895 0.0129 1.2933  0.0246     
## Jewiss et al., 2023 (Study 2).7 150.8021 0.0129 1.2933  0.0770     
## Jewiss et al., 2023 (Study 2).8 151.3698 0.0129 1.2933  0.0454     
## Jewiss et al., 2024             151.4819 0.0125 1.2535 -0.0422     
## Khalaf et al., 2020.1           151.2775 0.0201 2.0148  0.0460     
## Khalaf et al., 2020.2           151.1331 0.0201 2.0148  0.0541     
## Moore et al., 2017              147.6524 0.0197 1.9710  0.1548     
## O'Brien et al., 2022            150.3460 0.0158 1.5809 -0.1052     
## Petzel & Casad, 2022.1          113.1970 0.0172 1.7219  0.5598   * 
## Petzel & Casad, 2022.2          150.4113 0.0172 1.7219 -0.1015     
## Sammy et al., 2017              150.0421 0.0153 1.5262 -0.1166     
## Smith et al., 2022.1            148.3529 0.0121 1.2117 -0.1634     
## Smith et al., 2022.2            147.3424 0.0121 1.2117 -0.1873     
## Smith et al., 2022.3            142.4886 0.0121 1.2117 -0.2787     
## Snijdewint & Scheepers, 2023    151.5308 0.0207 2.0708 -0.0358     
## Trotman et al., 2018.2          145.9160 0.0180 1.8004  0.1943     
## Wood et al., 2018               151.3417 0.0119 1.1900 -0.0532     
## Scheepers & Keller, 2022        150.9690 0.0223 2.2250  0.0560     
## Bosshard et al., 2023.2         150.9722 0.0231 2.3134  0.0526     
## Simms, 2022.1                   151.0057 0.0117 1.1677  0.0667     
## Simms, 2022.2                   149.5031 0.0117 1.1677 -0.1308     
## Simms, 2022.3                   151.5156 0.0117 1.1677 -0.0383     
## Simms, 2022.4                   149.2972 0.0117 1.1677  0.1257     
## Simms, 2022.5                   151.4207 0.0117 1.1677 -0.0469     
## Simms, 2022.6                   151.6821 0.0117 1.1677  0.0062
rank_corr_test_CO <- ranktest(model_fun_CO)
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## nie można obliczyć dokładnej wartości prawdopodobieństwa z powtórzonymi
## wartościami
rank_corr_test_CO
## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.0541, p = 0.5210
# leave one out analysis #

leave1out(model_fun_CO)
## 
##                                 estimate     se   zval   pval   ci.lb  ci.ub 
## Arthur et al., 2019.1             0.0450 0.0252 1.7877 0.0738 -0.0043 0.0943 
## Arthur et al., 2019.2             0.0427 0.0247 1.7270 0.0842 -0.0058 0.0912 
## Arthur et al., 2019.3             0.0468 0.0253 1.8526 0.0639 -0.0027 0.0964 
## Baumgartner & Schneider, 2023     0.0506 0.0253 1.9945 0.0461  0.0009 0.1002 
## Behnke et al., 2020.1             0.0477 0.0256 1.8625 0.0625 -0.0025 0.0979 
## Behnke et al., 2020.2             0.0453 0.0255 1.7734 0.0762 -0.0048 0.0953 
## Behnke et al., 2022               0.0465 0.0259 1.7974 0.0723 -0.0042 0.0972 
## Behnke et al., 2024.1             0.0491 0.0258 1.9034 0.0570 -0.0015 0.0996 
## Behnke et al., 2024.2             0.0470 0.0259 1.8174 0.0692 -0.0037 0.0978 
## Brimmell et al., 2019             0.0397 0.0237 1.6733 0.0943 -0.0068 0.0862 
## Crowe et al., 2020.1              0.0477 0.0254 1.8741 0.0609 -0.0022 0.0975 
## Crowe et al., 2020.2              0.0495 0.0253 1.9573 0.0503 -0.0001 0.0991 
## Crowe et al., 2020.3              0.0464 0.0254 1.8236 0.0682 -0.0035 0.0962 
## Crowe et al., 2020.4              0.0486 0.0254 1.9137 0.0557 -0.0012 0.0984 
## Crowe et al., 2020.5              0.0456 0.0254 1.7963 0.0724 -0.0042 0.0954 
## Gurera & Isaacowitz, 2022.1       0.0442 0.0254 1.7419 0.0815 -0.0055 0.0939 
## Gurera & Isaacowitz, 2022.3       0.0488 0.0254 1.9196 0.0549 -0.0010 0.0986 
## Hangen et al., 2019.1             0.0473 0.0258 1.8354 0.0664 -0.0032 0.0979 
## Hangen et al., 2019.2             0.0466 0.0258 1.8067 0.0708 -0.0039 0.0971 
## Hase et al., 2019.1               0.0514 0.0251 2.0519 0.0402  0.0023 0.1005 
## Hase et al., 2019.2               0.0507 0.0252 2.0136 0.0441  0.0014 0.1000 
## Hase et al., 2019.3               0.0484 0.0255 1.9007 0.0573 -0.0015 0.0983 
## Hase et al., 2019.4               0.0475 0.0255 1.8642 0.0623 -0.0024 0.0975 
## Hase et al., 2019.5               0.0497 0.0254 1.9563 0.0504 -0.0001 0.0994 
## Hase et al., 2019.6               0.0511 0.0252 2.0280 0.0426  0.0017 0.1004 
## Hase et al., in preparation.3     0.0504 0.0251 2.0042 0.0450  0.0011 0.0997 
## Hase et al., in preparation.4     0.0511 0.0250 2.0416 0.0412  0.0020 0.1001 
## Hase et al., in preparation.5     0.0479 0.0254 1.8848 0.0595 -0.0019 0.0976 
## Hase et al., in preparation.6     0.0493 0.0253 1.9488 0.0513 -0.0003 0.0989 
## Hase et al., in preparation.7     0.0469 0.0254 1.8479 0.0646 -0.0028 0.0967 
## Hase et al., in preparation.8     0.0477 0.0254 1.8800 0.0601 -0.0020 0.0975 
## Hase et al., in preparation.9     0.0433 0.0250 1.7324 0.0832 -0.0057 0.0923 
## Hase et al., in preparation.10    0.0500 0.0252 1.9833 0.0473  0.0006 0.0993 
## Hase et al., in preparation.11    0.0473 0.0254 1.8623 0.0626 -0.0025 0.0970 
## Hase et al., in preparation.12    0.0472 0.0254 1.8580 0.0632 -0.0026 0.0969 
## Hase et al., in preparation.13    0.0483 0.0254 1.9036 0.0570 -0.0014 0.0980 
## Hase et al., in preparation.14    0.0477 0.0254 1.8802 0.0601 -0.0020 0.0975 
## Jewiss et al., 2023 (Study 1)     0.0432 0.0250 1.7262 0.0843 -0.0058 0.0922 
## Jewiss et al., 2023 (Study 2).1   0.0434 0.0251 1.7318 0.0833 -0.0057 0.0926 
## Jewiss et al., 2023 (Study 2).2   0.0485 0.0254 1.9082 0.0564 -0.0013 0.0983 
## Jewiss et al., 2023 (Study 2).3   0.0477 0.0254 1.8740 0.0609 -0.0022 0.0976 
## Jewiss et al., 2023 (Study 2).4   0.0449 0.0253 1.7736 0.0761 -0.0047 0.0945 
## Jewiss et al., 2023 (Study 2).5   0.0458 0.0254 1.8041 0.0712 -0.0040 0.0956 
## Jewiss et al., 2023 (Study 2).6   0.0466 0.0254 1.8325 0.0669 -0.0032 0.0965 
## Jewiss et al., 2023 (Study 2).7   0.0453 0.0254 1.7863 0.0740 -0.0044 0.0950 
## Jewiss et al., 2023 (Study 2).8   0.0461 0.0254 1.8133 0.0698 -0.0037 0.0959 
## Jewiss et al., 2024               0.0483 0.0254 1.9017 0.0572 -0.0015 0.0981 
## Khalaf et al., 2020.1             0.0461 0.0256 1.7979 0.0722 -0.0042 0.0963 
## Khalaf et al., 2020.2             0.0459 0.0256 1.7908 0.0733 -0.0043 0.0961 
## Moore et al., 2017                0.0434 0.0253 1.7163 0.0861 -0.0062 0.0929 
## O'Brien et al., 2022              0.0499 0.0253 1.9685 0.0490  0.0002 0.0996 
## Petzel & Casad, 2022.1            0.0365 0.0193 1.8954 0.0580 -0.0012 0.0743 
## Petzel & Casad, 2022.2            0.0498 0.0254 1.9610 0.0499  0.0000 0.0996 
## Sammy et al., 2017                0.0502 0.0253 1.9839 0.0473  0.0006 0.0997 
## Smith et al., 2022.1              0.0513 0.0250 2.0521 0.0402  0.0023 0.1003 
## Smith et al., 2022.2              0.0519 0.0249 2.0852 0.0371  0.0031 0.1006 
## Smith et al., 2022.3              0.0540 0.0243 2.2220 0.0263  0.0064 0.1016 
## Snijdewint & Scheepers, 2023      0.0482 0.0256 1.8778 0.0604 -0.0021 0.0984 
## Trotman et al., 2018.2            0.0424 0.0250 1.6980 0.0895 -0.0065 0.0914 
## Wood et al., 2018                 0.0486 0.0254 1.9153 0.0554 -0.0011 0.0983 
## Scheepers & Keller, 2022          0.0458 0.0257 1.7850 0.0743 -0.0045 0.0962 
## Bosshard et al., 2023.2           0.0459 0.0257 1.7862 0.0741 -0.0045 0.0963 
## Simms, 2022.1                     0.0456 0.0254 1.7975 0.0723 -0.0041 0.0953 
## Simms, 2022.2                     0.0505 0.0251 2.0098 0.0445  0.0013 0.0998 
## Simms, 2022.3                     0.0482 0.0254 1.8993 0.0575 -0.0015 0.0980 
## Simms, 2022.4                     0.0441 0.0252 1.7524 0.0797 -0.0052 0.0934 
## Simms, 2022.5                     0.0484 0.0254 1.9088 0.0563 -0.0013 0.0982 
## Simms, 2022.6                     0.0471 0.0254 1.8529 0.0639 -0.0027 0.0969 
##                                        Q     Qp   tau2      I2     H2 
## Arthur et al., 2019.1           150.1654 0.0000 0.0216 72.6522 3.6566 
## Arthur et al., 2019.2           144.9198 0.0000 0.0203 71.4010 3.4966 
## Arthur et al., 2019.3           151.6335 0.0000 0.0219 72.9742 3.7002 
## Baumgartner & Schneider, 2023   149.3719 0.0000 0.0217 72.5101 3.6377 
## Behnke et al., 2020.1           151.6685 0.0000 0.0225 73.2766 3.7420 
## Behnke et al., 2020.2           150.6638 0.0000 0.0222 73.0548 3.7112 
## Behnke et al., 2022             150.2281 0.0000 0.0229 70.5962 3.4009 
## Behnke et al., 2024.1           141.1102 0.0000 0.0227 67.6273 3.0890 
## Behnke et al., 2024.2           151.1877 0.0000 0.0230 67.9185 3.1171 
## Brimmell et al., 2019           136.7619 0.0000 0.0172 67.8293 3.1084 
## Crowe et al., 2020.1            151.6656 0.0000 0.0222 73.1543 3.7250 
## Crowe et al., 2020.2            150.6703 0.0000 0.0218 72.7846 3.6744 
## Crowe et al., 2020.3            151.5005 0.0000 0.0222 73.1341 3.7222 
## Crowe et al., 2020.4            151.3490 0.0000 0.0221 73.0294 3.7077 
## Crowe et al., 2020.5            151.0422 0.0000 0.0220 73.0065 3.7046 
## Gurera & Isaacowitz, 2022.1     149.3577 0.0000 0.0218 72.6528 3.6567 
## Gurera & Isaacowitz, 2022.3     151.2458 0.0000 0.0221 73.0279 3.7075 
## Hangen et al., 2019.1           151.6911 0.0000 0.0228 73.0550 3.7113 
## Hangen et al., 2019.2           151.4071 0.0000 0.0228 73.0407 3.7093 
## Hase et al., 2019.1             148.3503 0.0000 0.0210 71.9739 3.5681 
## Hase et al., 2019.2             149.3862 0.0000 0.0214 72.3501 3.6166 
## Hase et al., 2019.3             151.4593 0.0000 0.0222 73.1168 3.7198 
## Hase et al., 2019.4             151.6859 0.0000 0.0223 73.2059 3.7322 
## Hase et al., 2019.5             150.5634 0.0000 0.0219 72.8294 3.6804 
## Hase et al., 2019.6             148.8804 0.0000 0.0213 72.2188 3.5996 
## Hase et al., in preparation.3   149.6406 0.0000 0.0214 72.4063 3.6240 
## Hase et al., in preparation.4   148.6173 0.0000 0.0210 72.0565 3.5787 
## Hase et al., in preparation.5   151.6273 0.0000 0.0221 73.0915 3.7163 
## Hase et al., in preparation.6   150.8412 0.0000 0.0218 72.8177 3.6789 
## Hase et al., in preparation.7   151.6619 0.0000 0.0222 73.1234 3.7207 
## Hase et al., in preparation.8   151.6520 0.0000 0.0221 73.1019 3.7177 
## Hase et al., in preparation.9   147.7581 0.0000 0.0209 71.9754 3.5683 
## Hase et al., in preparation.10  150.1305 0.0000 0.0215 72.5660 3.6451 
## Hase et al., in preparation.11  151.6927 0.0000 0.0221 73.1089 3.7187 
## Hase et al., in preparation.12  151.6886 0.0000 0.0221 73.1101 3.7189 
## Hase et al., in preparation.13  151.4854 0.0000 0.0220 73.0235 3.7069 
## Hase et al., in preparation.14  151.6548 0.0000 0.0221 73.0875 3.7158 
## Jewiss et al., 2023 (Study 1)   147.7007 0.0000 0.0209 71.9587 3.5662 
## Jewiss et al., 2023 (Study 2).1 148.2297 0.0000 0.0211 72.1366 3.5889 
## Jewiss et al., 2023 (Study 2).2 151.4083 0.0000 0.0221 73.0567 3.7115 
## Jewiss et al., 2023 (Study 2).3 151.6648 0.0000 0.0222 73.1596 3.7257 
## Jewiss et al., 2023 (Study 2).4 150.4054 0.0000 0.0218 72.8229 3.6796 
## Jewiss et al., 2023 (Study 2).5 151.2130 0.0000 0.0221 73.0613 3.7121 
## Jewiss et al., 2023 (Study 2).6 151.5895 0.0000 0.0222 73.1622 3.7261 
## Jewiss et al., 2023 (Study 2).7 150.8021 0.0000 0.0220 72.9419 3.6957 
## Jewiss et al., 2023 (Study 2).8 151.3698 0.0000 0.0222 73.1051 3.7182 
## Jewiss et al., 2024             151.4819 0.0000 0.0221 73.0737 3.7138 
## Khalaf et al., 2020.1           151.2775 0.0000 0.0225 73.2321 3.7358 
## Khalaf et al., 2020.2           151.1331 0.0000 0.0225 73.2002 3.7314 
## Moore et al., 2017              147.6524 0.0000 0.0214 72.2692 3.6061 
## O'Brien et al., 2022            150.3460 0.0000 0.0218 72.7381 3.6681 
## Petzel & Casad, 2022.1          113.1970 0.0003 0.0068 45.3167 1.8287 
## Petzel & Casad, 2022.2          150.4113 0.0000 0.0219 72.7981 3.6762 
## Sammy et al., 2017              150.0421 0.0000 0.0217 72.6139 3.6515 
## Smith et al., 2022.1            148.3529 0.0000 0.0209 71.9580 3.5661 
## Smith et al., 2022.2            147.3424 0.0000 0.0205 71.5968 3.5207 
## Smith et al., 2022.3            142.4886 0.0000 0.0188 69.7777 3.3088 
## Snijdewint & Scheepers, 2023    151.5308 0.0000 0.0225 73.2258 3.7349 
## Trotman et al., 2018.2          145.9160 0.0000 0.0207 71.5844 3.5192 
## Wood et al., 2018               151.3417 0.0000 0.0220 73.0045 3.7043 
## Scheepers & Keller, 2022        150.9690 0.0000 0.0226 73.1537 3.7249 
## Bosshard et al., 2023.2         150.9722 0.0000 0.0226 73.1250 3.7209 
## Simms, 2022.1                   151.0057 0.0000 0.0220 72.9651 3.6989 
## Simms, 2022.2                   149.5031 0.0000 0.0213 72.3604 3.6180 
## Simms, 2022.3                   151.5156 0.0000 0.0221 73.0622 3.7123 
## Simms, 2022.4                   149.2972 0.0000 0.0214 72.4551 3.6304 
## Simms, 2022.5                   151.4207 0.0000 0.0221 73.0272 3.7074 
## Simms, 2022.6                   151.6821 0.0000 0.0222 73.1412 3.7232
# Egger# 
model_fun_CO_OutEgger <- rma.mv(yi = CO_cor_Z, V = CO_cor_Z_var, random = ~ 1 | paper_id/effect_size_id, mod = ~sqrt(CO_cor_Z_var), tdist=TRUE, data = Data)
## Warning: 94 rows with NAs omitted from model fitting.
model_fun_CO_OutEgger
## 
## Multivariate Meta-Analysis Model (k = 68; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0154  0.1241     28     no                 paper_id 
## sigma^2.2  0.0113  0.1064     68     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 66) = 150.9737, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 66) = 0.0342, p-val = 0.8539
## 
## Model Results:
## 
##                     estimate      se    tval  df    pval    ci.lb   ci.ub    
## intrcpt               0.0472  0.0872  0.5410  66  0.5904  -0.1269  0.2213    
## sqrt(CO_cor_Z_var)    0.1167  0.6310  0.1849  66  0.8539  -1.1432  1.3766    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Run trim-and-fill analysis for the right side
model_fun_CO_tf_right <- trimfill(model_fun_CO, side = "right")

# Run trim-and-fill analysis for the left side
model_fun_CO_tf_left <- trimfill(model_fun_CO, side = "left")

# Print the trim-and-fill model results
print(model_fun_CO_tf_right)
## 
## Estimated number of missing studies on the right side: 13 (SE = 5.4346)
## 
## Random-Effects Model (k = 81; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0342 (SE = 0.0088)
## tau (square root of estimated tau^2 value):      0.1848
## I^2 (total heterogeneity / total variability):   78.76%
## H^2 (total variability / sampling variability):  4.71
## 
## Test for Heterogeneity:
## Q(df = 80) = 224.7476, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.1032  0.0266  3.8850  0.0001  0.0511  0.1553  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(model_fun_CO_tf_left)
## 
## Estimated number of missing studies on the left side: 0 (SE = 4.4280)
## 
## Random-Effects Model (k = 68; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0216 (SE = 0.0070)
## tau (square root of estimated tau^2 value):      0.1470
## I^2 (total heterogeneity / total variability):   72.40%
## H^2 (total variability / sampling variability):  3.62
## 
## Test for Heterogeneity:
## Q(df = 67) = 151.6929, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub    
##   0.0473  0.0251  1.8842  0.0595  -0.0019  0.0964  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Combine the number of studies imputed from both sides
total_imputed_studies <- model_fun_CO_tf_right$k0 + model_fun_CO_tf_left$k0
cat("Total number of imputed studies (both sides) for CO:", total_imputed_studies, "\n")
## Total number of imputed studies (both sides) for CO: 13
# Generate funnel plots only for right side

#par(mfrow=c(1, 3))
#funnel(model_fun_CO, main="Original Model")
funnel(model_fun_CO_tf_right, main="Trim-and-Fill Right", xlab = 'CO')

#funnel(model_fun_CO_tf_left, main="Trim-and-Fill Left")

5.2 Multilevel Model

model_CO_multilevel <- rma.mv(yi = CO_cor_Z, V = CO_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML")
## Warning: 94 rows with NAs omitted from model fitting.
model_CO_multilevel
## 
## Multivariate Meta-Analysis Model (k = 68; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0134  0.1158     28     no                 paper_id 
## sigma^2.2  0.0114  0.1068     68     no  paper_id/effect_size_id 
## 
## Test for Heterogeneity:
## Q(df = 67) = 151.6929, p-val < .0001
## 
## Model Results:
## 
## estimate      se    tval  df    pval    ci.lb   ci.ub    
##   0.0610  0.0325  1.8779  67  0.0647  -0.0038  0.1258  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
convert_z2r(0.0919)
## [1] 0.09164215
forest.rma(model_CO_multilevel, header = "CO",slab = Data$Ref_APA, alim=c(-0.8,1.5))

# Prediction Intervals

predict_CO <- predict(model_CO_multilevel, digits=3, transf=transf.ztor, level = 95)
predict_CO
## 
##   pred  ci.lb ci.ub  pi.lb pi.ub 
##  0.061 -0.004 0.125 -0.254 0.364
# Additional Parameters for the Multilevel Model


######## list 1 ########
list_CO <- Data$CO_cor_Z_var

############ sum 1#####################
sum_CO <- sum(list_CO, na.rm = TRUE)

###################### sum 2 #####################
sum2_CO <- (sum_CO)^2

####################### list 2 ##############
list_In_CO <- Data$CO_cor_Z_var_Sq

#################### sum 3 #######################
sum_In_CO<- sum(list_In_CO, na.rm = TRUE)

############### numerator ##############
numerator_CO<- (model_CO_multilevel$k-1)*sum_CO

############# denominator #############
denominator_CO<- sum2_CO - sum_In_CO

############## eps ################
EPS_CO<- numerator_CO / denominator_CO
EPS_CO
## [1] 39.89371
############### i2 1 level ##################
I2_1_CO <- (EPS_CO) / (model_CO_multilevel$sigma2[1] + model_CO_multilevel$sigma2[2] + EPS_CO) *100
I2_1_CO
## [1] 99.93783
############## i2 2 level #################
I2_2_CO <- (model_CO_multilevel$sigma2[1]) / (model_CO_multilevel$sigma2[1] + model_CO_multilevel$sigma2[2] + EPS_CO) *100
I2_2_CO
## [1] 0.03357787
########### I2 level 3
I2_3_CO <- (model_CO_multilevel$sigma2[2]) / (model_CO_multilevel$sigma2[1] + model_CO_multilevel$sigma2[2] + EPS_CO) *100
I2_3_CO
## [1] 0.0285909
############### ML without level 2 ##########
model_CO_multilevel_2 <- rma.mv(yi = CO_cor_Z, V = CO_cor_Z_var, slab = Ref_APA, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", sigma2=c(0,NA), tdist=TRUE,data = Data)
## Warning: 94 rows with NAs omitted from model fitting.
############# ml without level 3 ###########
model_CO_multilevel_3 <- rma.mv(yi = CO_cor_Z, V = CO_cor_Z_var, slab = Ref_APA, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", sigma2=c(NA,0), tdist=TRUE,data = Data)
## Warning: 94 rows with NAs omitted from model fitting.
##################### sig level 2 #######################
anova12_CO <- anova(model_CO_multilevel,model_CO_multilevel_2)
anova12_CO
## 
##         df      AIC     BIC     AICc logLik    LRT   pval       QE 
## Full     3 -10.5180 -3.9039 -10.1371 8.2590               151.6929 
## Reduced  2  -9.5398 -5.1304  -9.3523 6.7699 2.9782 0.0844 151.6929
###############sig level 3v #################
anova13_CO <- anova(model_CO_multilevel,model_CO_multilevel_3)
anova13_CO
## 
##         df      AIC     BIC     AICc logLik    LRT   pval       QE 
## Full     3 -10.5180 -3.9039 -10.1371 8.2590               151.6929 
## Reduced  2  -4.7673 -0.3579  -4.5798 4.3836 7.7507 0.0054 151.6929

6. Total Peripheral Resistance

6.1 Identyfing outliers

model_fun_TPR <- rma(yi = TPR_cor_Z, vi= TPR_cor_Z_var, data = Data, slab = Ref_APA)
## Warning: 101 studies with NAs omitted from model fitting.
model_fun_TPR
## 
## Random-Effects Model (k = 61; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0130 (SE = 0.0060)
## tau (square root of estimated tau^2 value):      0.1139
## I^2 (total heterogeneity / total variability):   49.04%
## H^2 (total variability / sampling variability):  1.96
## 
## Test for Heterogeneity:
## Q(df = 60) = 117.8564, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub      
##  -0.0799  0.0240  -3.3272  0.0009  -0.1270  -0.0328  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# outliers diagnostics  - outlier rstudent > 3.0 #
Out_model_fun_TPR <- influence(model_fun_TPR)
Out_model_fun_TPR
## 
##                                 rstudent  dffits cook.d  cov.r tau2.del 
## Arthur et al., 2019.1            -1.1454 -0.1023 0.0104 1.0036   0.0128 
## Arthur et al., 2019.2            -0.5555 -0.0455 0.0021 1.0117   0.0131 
## Arthur et al., 2019.3             0.7127  0.0634 0.0040 1.0123   0.0131 
## Baumgartner & Schneider, 2023     0.0651  0.0216 0.0005 1.0501   0.0137 
## Behnke et al., 2024.1             1.2704  0.2657 0.0668 1.0211   0.0122 
## Brimmell et al., 2019            -2.5624 -0.3573 0.1197 0.9319   0.0106 
## Crowe et al., 2020.1             -0.3022 -0.0304 0.0009 1.0272   0.0133 
## Crowe et al., 2020.2              0.2982  0.0425 0.0018 1.0286   0.0134 
## Crowe et al., 2020.3              0.8475  0.1047 0.0110 1.0206   0.0131 
## Crowe et al., 2020.4              0.0994  0.0189 0.0004 1.0294   0.0134 
## Crowe et al., 2020.5              0.5967  0.0768 0.0059 1.0253   0.0133 
## Hangen et al., 2019.1             0.5387  0.1113 0.0130 1.0616   0.0137 
## Hangen et al., 2019.2             0.6168  0.1247 0.0162 1.0587   0.0137 
## Hase et al., 2019.1               2.2108  0.2551 0.0620 0.9615   0.0114 
## Hase et al., 2019.2               1.2757  0.1600 0.0254 1.0094   0.0128 
## Hase et al., 2019.3               0.6282  0.0874 0.0077 1.0290   0.0133 
## Hase et al., 2019.4               0.2224  0.0363 0.0013 1.0331   0.0135 
## Hase et al., 2019.5               0.5259  0.0811 0.0067 1.0356   0.0134 
## Hase et al., 2019.6               0.5942  0.0900 0.0082 1.0343   0.0134 
## Hase et al., in preparation.3     0.1865  0.0271 0.0007 1.0257   0.0134 
## Hase et al., in preparation.4    -0.1398 -0.0099 0.0001 1.0246   0.0133 
## Hase et al., in preparation.5    -0.0933 -0.0046 0.0000 1.0248   0.0133 
## Hase et al., in preparation.6     0.7473  0.0877 0.0077 1.0201   0.0132 
## Hase et al., in preparation.7     1.4549  0.1558 0.0241 1.0020   0.0127 
## Hase et al., in preparation.8    -0.0468  0.0007 0.0000 1.0250   0.0133 
## Hase et al., in preparation.9    -1.5782 -0.1818 0.0326 0.9913   0.0124 
## Hase et al., in preparation.10    0.4486  0.0536 0.0029 1.0223   0.0133 
## Hase et al., in preparation.11   -1.0838 -0.1189 0.0141 1.0076   0.0128 
## Hase et al., in preparation.12    0.6286  0.0722 0.0052 1.0203   0.0132 
## Hase et al., in preparation.13    0.6286  0.0722 0.0052 1.0203   0.0132 
## Hase et al., in preparation.14   -0.6451 -0.0671 0.0045 1.0175   0.0131 
## Jewiss et al., 2023 (Study 1)    -1.9260 -0.2474 0.0594 0.9731   0.0118 
## Jewiss et al., 2023 (Study 2).1  -0.6691 -0.0779 0.0061 1.0215   0.0132 
## Jewiss et al., 2023 (Study 2).2  -0.5116 -0.0574 0.0033 1.0247   0.0133 
## Jewiss et al., 2023 (Study 2).3   0.1505  0.0253 0.0006 1.0298   0.0134 
## Jewiss et al., 2023 (Study 2).4  -0.5116 -0.0574 0.0033 1.0247   0.0133 
## Jewiss et al., 2023 (Study 2).5  -0.2029 -0.0181 0.0003 1.0287   0.0134 
## Jewiss et al., 2023 (Study 2).6  -0.2029 -0.0181 0.0003 1.0287   0.0134 
## Jewiss et al., 2023 (Study 2).7   0.6023  0.0782 0.0062 1.0257   0.0133 
## Jewiss et al., 2023 (Study 2).8   0.9066  0.1121 0.0126 1.0195   0.0131 
## Jewiss et al., 2024               0.5910  0.0754 0.0057 1.0249   0.0133 
## Khalaf et al., 2020.1             0.0270  0.0162 0.0003 1.0529   0.0138 
## Khalaf et al., 2020.2            -0.1737 -0.0166 0.0003 1.0515   0.0137 
## Moore et al., 2017               -1.6109 -0.2845 0.0763 0.9802   0.0116 
## O'Brien et al., 2022             -1.3518 -0.1951 0.0374 0.9997   0.0124 
## Petzel & Casad, 2022.1           -3.6025 -0.7086 0.3951 0.8075   0.0070 
## Petzel & Casad, 2022.2           -0.1086 -0.0062 0.0000 1.0423   0.0136 
## Sammy et al., 2017                1.6013  0.2029 0.0403 0.9948   0.0123 
## Smith et al., 2022.1             -0.9429 -0.1098 0.0121 1.0131   0.0130 
## Smith et al., 2022.2             -0.5772 -0.0635 0.0041 1.0216   0.0132 
## Smith et al., 2022.3             -1.3001 -0.1565 0.0243 1.0015   0.0126 
## Trotman et al., 2018.2           -1.3110 -0.2069 0.0419 1.0024   0.0124 
## Wood et al., 2018                 0.5727  0.0710 0.0051 1.0237   0.0133 
## Scheepers & Keller, 2022          0.4492  0.0885 0.0081 1.0557   0.0137 
## Bosshard et al., 2023.2           0.5133  0.1017 0.0108 1.0569   0.0137 
## Simms, 2022.1                    -0.1623 -0.0126 0.0002 1.0257   0.0133 
## Simms, 2022.2                     1.2756  0.1423 0.0202 1.0078   0.0128 
## Simms, 2022.3                     0.2972  0.0399 0.0016 1.0258   0.0133 
## Simms, 2022.4                    -0.9424 -0.1073 0.0115 1.0125   0.0130 
## Simms, 2022.5                     0.5332  0.0659 0.0044 1.0237   0.0133 
## Simms, 2022.6                     0.4199  0.0535 0.0029 1.0249   0.0133 
##                                   QE.del    hat weight    dfbs inf 
## Arthur et al., 2019.1           115.6011 0.0076 0.7646 -0.1024     
## Arthur et al., 2019.2           117.1407 0.0072 0.7246 -0.0454     
## Arthur et al., 2019.3           117.5669 0.0072 0.7246  0.0633     
## Baumgartner & Schneider, 2023   117.6039 0.0242 2.4209  0.0216     
## Behnke et al., 2024.1            92.0135 0.0431 4.3115  0.2616     
## Brimmell et al., 2019           106.2089 0.0149 1.4947 -0.3610     
## Crowe et al., 2020.1            117.3103 0.0142 1.4163 -0.0303     
## Crowe et al., 2020.2            117.8563 0.0142 1.4163  0.0424     
## Crowe et al., 2020.3            117.4306 0.0142 1.4163  0.1046     
## Crowe et al., 2020.4            117.7928 0.0142 1.4163  0.0188     
## Crowe et al., 2020.5            117.7337 0.0142 1.4163  0.0767     
## Hangen et al., 2019.1           117.8382 0.0344 3.4352  0.1124     
## Hangen et al., 2019.2           117.7661 0.0344 3.4352  0.1258     
## Hase et al., 2019.1             112.5643 0.0166 1.6627  0.2561     
## Hase et al., 2019.2             116.4717 0.0162 1.6167  0.1600     
## Hase et al., 2019.3             117.7173 0.0166 1.6627  0.0874     
## Hase et al., 2019.4             117.8387 0.0162 1.6167  0.0362     
## Hase et al., 2019.5             117.8068 0.0193 1.9289  0.0811     
## Hase et al., 2019.6             117.7582 0.0193 1.9289  0.0900     
## Hase et al., in preparation.3   117.8420 0.0125 1.2463  0.0271     
## Hase et al., in preparation.4   117.6082 0.0122 1.2161 -0.0099     
## Hase et al., in preparation.5   117.6596 0.0122 1.2161 -0.0046     
## Hase et al., in preparation.6   117.5648 0.0125 1.2463  0.0876     
## Hase et al., in preparation.7   115.9999 0.0122 1.2161  0.1561     
## Hase et al., in preparation.8   117.7050 0.0122 1.2161  0.0007     
## Hase et al., in preparation.9   113.2293 0.0119 1.1854 -0.1826     
## Hase et al., in preparation.10  117.8169 0.0115 1.1540  0.0535     
## Hase et al., in preparation.11  115.3756 0.0115 1.1540 -0.1190     
## Hase et al., in preparation.12  117.6904 0.0115 1.1540  0.0721     
## Hase et al., in preparation.13  117.6904 0.0115 1.1540  0.0721     
## Hase et al., in preparation.14  116.7107 0.0115 1.1540 -0.0671     
## Jewiss et al., 2023 (Study 1)   110.8684 0.0139 1.3892 -0.2488     
## Jewiss et al., 2023 (Study 2).1 116.4399 0.0144 1.4429 -0.0778     
## Jewiss et al., 2023 (Study 2).2 116.8568 0.0144 1.4429 -0.0573     
## Jewiss et al., 2023 (Study 2).3 117.8186 0.0144 1.4429  0.0252     
## Jewiss et al., 2023 (Study 2).4 116.8568 0.0144 1.4429 -0.0573     
## Jewiss et al., 2023 (Study 2).5 117.4657 0.0144 1.4429 -0.0181     
## Jewiss et al., 2023 (Study 2).6 117.4657 0.0144 1.4429 -0.0181     
## Jewiss et al., 2023 (Study 2).7 117.7303 0.0144 1.4429  0.0781     
## Jewiss et al., 2023 (Study 2).8 117.3334 0.0144 1.4429  0.1121     
## Jewiss et al., 2024             117.7372 0.0139 1.3892  0.0753     
## Khalaf et al., 2020.1           117.5001 0.0256 2.5553  0.0163     
## Khalaf et al., 2020.2           117.0312 0.0256 2.5553 -0.0166     
## Moore et al., 2017              109.1560 0.0248 2.4792 -0.2826     
## O'Brien et al., 2022            112.9972 0.0185 1.8526 -0.1952     
## Petzel & Casad, 2022.1           94.5681 0.0207 2.0689 -0.7069   * 
## Petzel & Casad, 2022.2          117.4207 0.0207 2.0689 -0.0062     
## Sammy et al., 2017              115.3210 0.0177 1.7715  0.2031     
## Smith et al., 2022.1            115.6715 0.0133 1.3336 -0.1098     
## Smith et al., 2022.2            116.7635 0.0133 1.3336 -0.0634     
## Smith et al., 2022.3            114.2596 0.0133 1.3336 -0.1568     
## Trotman et al., 2018.2          112.3381 0.0219 2.1941 -0.2066     
## Wood et al., 2018               117.7475 0.0131 1.3051  0.0709     
## Scheepers & Keller, 2022        117.8562 0.0294 2.9391  0.0891     
## Bosshard et al., 2023.2         117.8441 0.0311 3.1102  0.1025     
## Simms, 2022.1                   117.5671 0.0128 1.2760 -0.0126     
## Simms, 2022.2                   116.5156 0.0128 1.2760  0.1424     
## Simms, 2022.3                   117.8564 0.0128 1.2760  0.0398     
## Simms, 2022.4                   115.7351 0.0128 1.2760 -0.1073     
## Simms, 2022.5                   117.7748 0.0128 1.2760  0.0657     
## Simms, 2022.6                   117.8334 0.0128 1.2760  0.0534
ranktest(model_fun_TPR)
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## nie można obliczyć dokładnej wartości prawdopodobieństwa z powtórzonymi
## wartościami
## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.0117, p = 0.8957
# leave one out analysis #

leave1out(model_fun_TPR)
## 
##                                 estimate     se    zval   pval   ci.lb   ci.ub 
## Arthur et al., 2019.1            -0.0775 0.0241 -3.2192 0.0013 -0.1246 -0.0303 
## Arthur et al., 2019.2            -0.0788 0.0242 -3.2626 0.0011 -0.1262 -0.0315 
## Arthur et al., 2019.3            -0.0815 0.0242 -3.3701 0.0008 -0.1288 -0.0341 
## Baumgartner & Schneider, 2023    -0.0805 0.0246 -3.2681 0.0011 -0.1287 -0.0322 
## Behnke et al., 2024.1            -0.0861 0.0243 -3.5484 0.0004 -0.1337 -0.0386 
## Brimmell et al., 2019            -0.0716 0.0232 -3.0882 0.0020 -0.1171 -0.0262 
## Crowe et al., 2020.1             -0.0792 0.0243 -3.2527 0.0011 -0.1269 -0.0315 
## Crowe et al., 2020.2             -0.0810 0.0244 -3.3227 0.0009 -0.1287 -0.0332 
## Crowe et al., 2020.3             -0.0824 0.0243 -3.3973 0.0007 -0.1300 -0.0349 
## Crowe et al., 2020.4             -0.0804 0.0244 -3.2981 0.0010 -0.1281 -0.0326 
## Crowe et al., 2020.5             -0.0818 0.0243 -3.3620 0.0008 -0.1295 -0.0341 
## Hangen et al., 2019.1            -0.0827 0.0248 -3.3396 0.0008 -0.1312 -0.0341 
## Hangen et al., 2019.2            -0.0830 0.0247 -3.3574 0.0008 -0.1314 -0.0345 
## Hase et al., 2019.1              -0.0859 0.0236 -3.6472 0.0003 -0.1321 -0.0397 
## Hase et al., 2019.2              -0.0838 0.0241 -3.4704 0.0005 -0.1311 -0.0365 
## Hase et al., 2019.3              -0.0820 0.0244 -3.3666 0.0008 -0.1298 -0.0343 
## Hase et al., 2019.4              -0.0808 0.0244 -3.3093 0.0009 -0.1287 -0.0329 
## Hase et al., 2019.5              -0.0819 0.0244 -3.3497 0.0008 -0.1298 -0.0340 
## Hase et al., 2019.6              -0.0821 0.0244 -3.3608 0.0008 -0.1300 -0.0342 
## Hase et al., in preparation.3    -0.0806 0.0243 -3.3121 0.0009 -0.1283 -0.0329 
## Hase et al., in preparation.4    -0.0797 0.0243 -3.2772 0.0010 -0.1273 -0.0320 
## Hase et al., in preparation.5    -0.0798 0.0243 -3.2821 0.0010 -0.1275 -0.0322 
## Hase et al., in preparation.6    -0.0820 0.0243 -3.3813 0.0007 -0.1296 -0.0345 
## Hase et al., in preparation.7    -0.0837 0.0240 -3.4790 0.0005 -0.1308 -0.0365 
## Hase et al., in preparation.8    -0.0799 0.0243 -3.2870 0.0010 -0.1276 -0.0323 
## Hase et al., in preparation.9    -0.0756 0.0239 -3.1604 0.0016 -0.1225 -0.0287 
## Hase et al., in preparation.10   -0.0812 0.0243 -3.3439 0.0008 -0.1288 -0.0336 
## Hase et al., in preparation.11   -0.0771 0.0241 -3.1964 0.0014 -0.1243 -0.0298 
## Hase et al., in preparation.12   -0.0817 0.0243 -3.3655 0.0008 -0.1292 -0.0341 
## Hase et al., in preparation.13   -0.0817 0.0243 -3.3655 0.0008 -0.1292 -0.0341 
## Hase et al., in preparation.14   -0.0783 0.0242 -3.2318 0.0012 -0.1258 -0.0308 
## Jewiss et al., 2023 (Study 1)    -0.0741 0.0237 -3.1258 0.0018 -0.1205 -0.0276 
## Jewiss et al., 2023 (Study 2).1  -0.0780 0.0243 -3.2148 0.0013 -0.1256 -0.0305 
## Jewiss et al., 2023 (Study 2).2  -0.0785 0.0243 -3.2300 0.0012 -0.1262 -0.0309 
## Jewiss et al., 2023 (Study 2).3  -0.0805 0.0244 -3.3037 0.0010 -0.1283 -0.0328 
## Jewiss et al., 2023 (Study 2).4  -0.0785 0.0243 -3.2300 0.0012 -0.1262 -0.0309 
## Jewiss et al., 2023 (Study 2).5  -0.0795 0.0244 -3.2624 0.0011 -0.1272 -0.0317 
## Jewiss et al., 2023 (Study 2).6  -0.0795 0.0244 -3.2624 0.0011 -0.1272 -0.0317 
## Jewiss et al., 2023 (Study 2).7  -0.0818 0.0243 -3.3628 0.0008 -0.1295 -0.0341 
## Jewiss et al., 2023 (Study 2).8  -0.0826 0.0243 -3.4064 0.0007 -0.1302 -0.0351 
## Jewiss et al., 2024              -0.0817 0.0243 -3.3612 0.0008 -0.1294 -0.0341 
## Khalaf et al., 2020.1            -0.0803 0.0246 -3.2587 0.0011 -0.1286 -0.0320 
## Khalaf et al., 2020.2            -0.0795 0.0246 -3.2283 0.0012 -0.1278 -0.0312 
## Moore et al., 2017               -0.0733 0.0238 -3.0816 0.0021 -0.1199 -0.0267 
## O'Brien et al., 2022             -0.0753 0.0240 -3.1343 0.0017 -0.1224 -0.0282 
## Petzel & Casad, 2022.1           -0.0648 0.0216 -3.0031 0.0027 -0.1071 -0.0225 
## Petzel & Casad, 2022.2           -0.0798 0.0245 -3.2529 0.0011 -0.1278 -0.0317 
## Sammy et al., 2017               -0.0847 0.0240 -3.5372 0.0004 -0.1317 -0.0378 
## Smith et al., 2022.1             -0.0773 0.0242 -3.1965 0.0014 -0.1247 -0.0299 
## Smith et al., 2022.2             -0.0784 0.0243 -3.2288 0.0012 -0.1260 -0.0308 
## Smith et al., 2022.3             -0.0762 0.0240 -3.1690 0.0015 -0.1233 -0.0291 
## Trotman et al., 2018.2           -0.0750 0.0241 -3.1189 0.0018 -0.1221 -0.0279 
## Wood et al., 2018                -0.0816 0.0243 -3.3588 0.0008 -0.1293 -0.0340 
## Scheepers & Keller, 2022         -0.0821 0.0247 -3.3261 0.0009 -0.1305 -0.0337 
## Bosshard et al., 2023.2          -0.0824 0.0247 -3.3373 0.0008 -0.1308 -0.0340 
## Simms, 2022.1                    -0.0796 0.0243 -3.2728 0.0011 -0.1273 -0.0319 
## Simms, 2022.2                    -0.0833 0.0241 -3.4558 0.0005 -0.1306 -0.0361 
## Simms, 2022.3                    -0.0809 0.0243 -3.3246 0.0009 -0.1286 -0.0332 
## Simms, 2022.4                    -0.0773 0.0242 -3.1999 0.0014 -0.1247 -0.0300 
## Simms, 2022.5                    -0.0815 0.0243 -3.3538 0.0008 -0.1291 -0.0339 
## Simms, 2022.6                    -0.0812 0.0243 -3.3396 0.0008 -0.1289 -0.0336 
##                                        Q     Qp   tau2      I2     H2 
## Arthur et al., 2019.1           115.6011 0.0000 0.0128 49.1178 1.9653 
## Arthur et al., 2019.2           117.1407 0.0000 0.0131 49.6122 1.9846 
## Arthur et al., 2019.3           117.5669 0.0000 0.0131 49.6447 1.9859 
## Baumgartner & Schneider, 2023   117.6039 0.0000 0.0137 50.2527 2.0102 
## Behnke et al., 2024.1            92.0135 0.0038 0.0122 38.7534 1.6327 
## Brimmell et al., 2019           106.2089 0.0002 0.0106 44.0855 1.7884 
## Crowe et al., 2020.1            117.3103 0.0000 0.0133 49.9444 1.9978 
## Crowe et al., 2020.2            117.8563 0.0000 0.0134 50.0218 2.0009 
## Crowe et al., 2020.3            117.4306 0.0000 0.0131 49.5710 1.9830 
## Crowe et al., 2020.4            117.7928 0.0000 0.0134 50.0627 2.0025 
## Crowe et al., 2020.5            117.7337 0.0000 0.0133 49.8377 1.9935 
## Hangen et al., 2019.1           117.8382 0.0000 0.0137 49.1716 1.9674 
## Hangen et al., 2019.2           117.7661 0.0000 0.0137 49.0087 1.9611 
## Hase et al., 2019.1             112.5643 0.0000 0.0114 45.8380 1.8463 
## Hase et al., 2019.2             116.4717 0.0000 0.0128 48.7662 1.9518 
## Hase et al., 2019.3             117.7173 0.0000 0.0133 49.8336 1.9934 
## Hase et al., 2019.4             117.8387 0.0000 0.0135 50.1028 2.0041 
## Hase et al., 2019.5             117.8068 0.0000 0.0134 49.9603 1.9984 
## Hase et al., 2019.6             117.7582 0.0000 0.0134 49.8840 1.9954 
## Hase et al., in preparation.3   117.8420 0.0000 0.0134 49.9966 1.9999 
## Hase et al., in preparation.4   117.6082 0.0000 0.0133 49.9588 1.9984 
## Hase et al., in preparation.5   117.6596 0.0000 0.0133 49.9720 1.9989 
## Hase et al., in preparation.6   117.5648 0.0000 0.0132 49.6817 1.9873 
## Hase et al., in preparation.7   115.9999 0.0000 0.0127 48.6767 1.9484 
## Hase et al., in preparation.8   117.7050 0.0000 0.0133 49.9821 1.9993 
## Hase et al., in preparation.9   113.2293 0.0000 0.0124 48.0697 1.9257 
## Hase et al., in preparation.10  117.8169 0.0000 0.0133 49.8813 1.9953 
## Hase et al., in preparation.11  115.3756 0.0000 0.0128 49.0463 1.9626 
## Hase et al., in preparation.12  117.6904 0.0000 0.0132 49.7712 1.9909 
## Hase et al., in preparation.13  117.6904 0.0000 0.0132 49.7712 1.9909 
## Hase et al., in preparation.14  116.7107 0.0000 0.0131 49.6099 1.9845 
## Jewiss et al., 2023 (Study 1)   110.8684 0.0001 0.0118 46.8025 1.8798 
## Jewiss et al., 2023 (Study 2).1 116.4399 0.0000 0.0132 49.6015 1.9842 
## Jewiss et al., 2023 (Study 2).2 116.8568 0.0000 0.0133 49.7797 1.9912 
## Jewiss et al., 2023 (Study 2).3 117.8186 0.0000 0.0134 50.0669 2.0027 
## Jewiss et al., 2023 (Study 2).4 116.8568 0.0000 0.0133 49.7797 1.9912 
## Jewiss et al., 2023 (Study 2).5 117.4657 0.0000 0.0134 50.0065 2.0003 
## Jewiss et al., 2023 (Study 2).6 117.4657 0.0000 0.0134 50.0065 2.0003 
## Jewiss et al., 2023 (Study 2).7 117.7303 0.0000 0.0133 49.8365 1.9935 
## Jewiss et al., 2023 (Study 2).8 117.3334 0.0000 0.0131 49.4903 1.9798 
## Jewiss et al., 2024             117.7372 0.0000 0.0133 49.8387 1.9936 
## Khalaf et al., 2020.1           117.5001 0.0000 0.0138 50.2441 2.0098 
## Khalaf et al., 2020.2           117.0312 0.0000 0.0137 50.1680 2.0067 
## Moore et al., 2017              109.1560 0.0001 0.0116 46.1263 1.8562 
## O'Brien et al., 2022            112.9972 0.0000 0.0124 47.9867 1.9226 
## Petzel & Casad, 2022.1           94.5681 0.0023 0.0070 34.2352 1.5206 
## Petzel & Casad, 2022.2          117.4207 0.0000 0.0136 50.1916 2.0077 
## Sammy et al., 2017              115.3210 0.0000 0.0123 47.7699 1.9146 
## Smith et al., 2022.1            115.6715 0.0000 0.0130 49.2172 1.9692 
## Smith et al., 2022.2            116.7635 0.0000 0.0132 49.6983 1.9880 
## Smith et al., 2022.3            114.2596 0.0000 0.0126 48.5472 1.9435 
## Trotman et al., 2018.2          112.3381 0.0000 0.0124 47.7982 1.9156 
## Wood et al., 2018               117.7475 0.0000 0.0133 49.8392 1.9936 
## Scheepers & Keller, 2022        117.8562 0.0000 0.0137 49.8700 1.9948 
## Bosshard et al., 2023.2         117.8441 0.0000 0.0137 49.6472 1.9860 
## Simms, 2022.1                   117.5671 0.0000 0.0133 49.9714 1.9989 
## Simms, 2022.2                   116.5156 0.0000 0.0128 48.9619 1.9593 
## Simms, 2022.3                   117.8564 0.0000 0.0133 49.9799 1.9992 
## Simms, 2022.4                   115.7351 0.0000 0.0130 49.2307 1.9697 
## Simms, 2022.5                   117.7748 0.0000 0.0133 49.8618 1.9945 
## Simms, 2022.6                   117.8334 0.0000 0.0133 49.9288 1.9972
# Egger# 
model_fun_TPR_OutEgger <- rma.mv(yi = TPR_cor_Z, V = TPR_cor_Z_var, random = ~ 1 | paper_id/effect_size_id, mod = ~sqrt(TPR_cor_Z_var), tdist=TRUE, data = Data)
## Warning: 101 rows with NAs omitted from model fitting.
model_fun_TPR_OutEgger
## 
## Multivariate Meta-Analysis Model (k = 61; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0169  0.1299     24     no                 paper_id 
## sigma^2.2  0.0000  0.0000     61     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 59) = 94.1233, p-val = 0.0025
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 59) = 1.3928, p-val = 0.2427
## 
## Model Results:
## 
##                      estimate      se     tval  df    pval    ci.lb   ci.ub    
## intrcpt                0.0011  0.0901   0.0119  59  0.9906  -0.1793  0.1815    
## sqrt(TPR_cor_Z_var)   -0.7579  0.6422  -1.1802  59  0.2427  -2.0430  0.5272    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Run trim-and-fill analysis for the right side
model_fun_TPR_tf_right <- trimfill(model_fun_TPR, side = "right")

# Run trim-and-fill analysis for the left side
model_fun_TPR_tf_left <- trimfill(model_fun_TPR, side = "left")

# Print the trim-and-fill model results
print(model_fun_TPR_tf_right)
## 
## Estimated number of missing studies on the right side: 0 (SE = 4.4372)
## 
## Random-Effects Model (k = 61; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0130 (SE = 0.0060)
## tau (square root of estimated tau^2 value):      0.1139
## I^2 (total heterogeneity / total variability):   49.04%
## H^2 (total variability / sampling variability):  1.96
## 
## Test for Heterogeneity:
## Q(df = 60) = 117.8564, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub      
##  -0.0799  0.0240  -3.3272  0.0009  -0.1270  -0.0328  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(model_fun_TPR_tf_left)
## 
## Estimated number of missing studies on the left side: 4 (SE = 4.9501)
## 
## Random-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0174 (SE = 0.0068)
## tau (square root of estimated tau^2 value):      0.1321
## I^2 (total heterogeneity / total variability):   55.84%
## H^2 (total variability / sampling variability):  2.26
## 
## Test for Heterogeneity:
## Q(df = 64) = 145.0705, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub      
##  -0.1015  0.0250  -4.0679  <.0001  -0.1505  -0.0526  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Combine the number of studies imputed from both sides
total_imputed_studies <- model_fun_TPR_tf_right$k0 + model_fun_TPR_tf_left$k0
cat("Total number of imputed studies (both sides) for TPR:", total_imputed_studies, "\n")
## Total number of imputed studies (both sides) for TPR: 4
# Generate funnel plots only lef
#par(mfrow=c(1, 3))
#funnel(model_fun_TPR, main="Original Model")
#funnel(model_fun_TPR_tf_right, main="Trim-and-Fill Right")
funnel(model_fun_TPR_tf_left, main="Trim-and-Fill Left",  xlab = 'TPR')

# Return to single plot layout
#par(mfrow=c(1, 1))

6.2 Multilevel Model

model_TPR_multilevel <- rma.mv(yi = TPR_cor_Z, V = TPR_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML")
## Warning: 101 rows with NAs omitted from model fitting.
model_TPR_multilevel
## 
## Multivariate Meta-Analysis Model (k = 61; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0174  0.1319     24     no                 paper_id 
## sigma^2.2  0.0000  0.0000     61     no  paper_id/effect_size_id 
## 
## Test for Heterogeneity:
## Q(df = 60) = 117.8564, p-val < .0001
## 
## Model Results:
## 
## estimate      se     tval  df    pval    ci.lb    ci.ub     
##  -0.0980  0.0341  -2.8734  60  0.0056  -0.1662  -0.0298  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
convert_z2r(-0.1042)
## [1] -0.1038245
predict_TPR <- predict(model_TPR_multilevel, digits=3, transf=transf.ztor, level = 95)
predict_TPR
## 
##    pred  ci.lb  ci.ub  pi.lb pi.ub 
##  -0.098 -0.165 -0.030 -0.354 0.173
forest.rma(model_TPR_multilevel, header = "TPR",slab = Data$Ref_APA, alim=c(-1, 1))

######## list 1 ########
list_TPR <- Data$TPR_cor_Z_var

############ sum 1#####################
sum_TPR <- sum(list_TPR, na.rm = TRUE)

###################### sum 2 #####################
sum2_TPR <- (sum_TPR)^2

####################### list 2 ##############
list_In_TPR <- Data$TPR_cor_Z_var_Sq

#################### sum 3 #######################
sum_In_TPR<- sum(list_In_TPR, na.rm = TRUE)

################ numerator ##############
numerator_TPR<- (model_TPR_multilevel$k-1)*sum_TPR

############# denominator #############
denominator_TPR<- sum2_TPR - sum_In_TPR

############## eps ################
EPS_TPR<- numerator_TPR / denominator_TPR

############### i2 1 level ##################
I2_1_TPR <- (EPS_TPR) / (model_TPR_multilevel$sigma2[1] + model_TPR_multilevel$sigma2[2] + EPS_TPR) *100
I2_1_TPR
## [1] 99.95343
############## i2 2 level #################
I2_2_TPR <- (model_TPR_multilevel$sigma2[1]) / (model_TPR_multilevel$sigma2[1] + model_TPR_multilevel$sigma2[2] + EPS_TPR) *100
I2_2_TPR
## [1] 0.04656649
########### I2 level 3
I2_3_TPR <- (model_TPR_multilevel$sigma2[2]) / (model_TPR_multilevel$sigma2[1] + model_TPR_multilevel$sigma2[2] + EPS_TPR) *100
I2_3_TPR
## [1] 6.142443e-11
############### ML without level 2 ##########
model_TPR_multilevel_2 <- rma.mv(yi = TPR_cor_Z, V = TPR_cor_Z_var, slab = Ref_APA, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", sigma2=c(0,NA), tdist=TRUE,data = Data)
## Warning: 101 rows with NAs omitted from model fitting.
############# ml without level 3 ###########
model_TPR_multilevel_3 <- rma.mv(yi = TPR_cor_Z, V = TPR_cor_Z_var, slab = Ref_APA, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", sigma2=c(NA,0), tdist=TRUE,data = Data)
## Warning: 101 rows with NAs omitted from model fitting.
##################### sig level 2 #######################
anova12_TPR <- anova(model_TPR_multilevel,model_TPR_multilevel_2)
anova12_TPR
## 
##         df      AIC      BIC     AICc  logLik    LRT   pval       QE 
## Full     3 -26.9774 -20.6943 -26.5488 16.4887               117.8564 
## Reduced  2 -24.9796 -20.7909 -24.7691 14.4898 3.9978 0.0456 117.8564
###############sig level 3v #################
anova13_TPR <- anova(model_TPR_multilevel,model_TPR_multilevel_3)
anova13_TPR
## 
##         df      AIC      BIC     AICc  logLik    LRT   pval       QE 
## Full     3 -26.9774 -20.6943 -26.5488 16.4887               117.8564 
## Reduced  2 -28.9774 -24.7887 -28.7668 16.4887 0.0000 1.0000 117.8564

7. Cardiovascular Challenge and Threat Index

7.1 Identyfing outliers

# CTI
model_fun_CTI <- rma(yi = CTI_cor_Z, vi= CTI_cor_Z_var, data = Data, slab = Ref_APA)
## Warning: 89 studies with NAs omitted from model fitting.
model_fun_CTI
## 
## Random-Effects Model (k = 73; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0293 (SE = 0.0088)
## tau (square root of estimated tau^2 value):      0.1710
## I^2 (total heterogeneity / total variability):   66.76%
## H^2 (total variability / sampling variability):  3.01
## 
## Test for Heterogeneity:
## Q(df = 72) = 195.5175, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.0966  0.0273  3.5456  0.0004  0.0432  0.1501  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# outliers diagnostics  - outlier rstudent > 3.0 #
Out_model_fun_CTI <- influence(model_fun_CTI)
Out_model_fun_CTI
## 
##                                 rstudent  dffits cook.d  cov.r tau2.del 
## Arthur et al., 2019.1             0.9248  0.0835 0.0070 1.0093   0.0293 
## Arthur et al., 2019.2             1.4709  0.1301 0.0169 0.9987   0.0288 
## Arthur et al., 2019.3            -0.5593 -0.0500 0.0025 1.0134   0.0295 
## Behnke et al., 2024.1            -0.8577 -0.1373 0.0191 1.0322   0.0296 
## Brimmell et al., 2019             2.3027  0.2735 0.0710 0.9574   0.0264 
## Crowe et al., 2020.1             -0.0691 -0.0090 0.0001 1.0266   0.0299 
## Crowe et al., 2020.2             -0.4474 -0.0523 0.0028 1.0241   0.0298 
## Crowe et al., 2020.3             -0.7859 -0.0908 0.0083 1.0185   0.0295 
## Crowe et al., 2020.4              0.1002  0.0105 0.0001 1.0265   0.0299 
## Crowe et al., 2020.5             -0.6160 -0.0715 0.0051 1.0217   0.0297 
## Dixon et al., 2019                1.4682  0.1672 0.0276 0.9979   0.0285 
## Hangen et al., 2019.1            -0.3652 -0.0563 0.0033 1.0428   0.0303 
## Hangen et al., 2019.2            -0.3102 -0.0481 0.0024 1.0436   0.0303 
## Hase et al., 2019.1              -0.7277 -0.0890 0.0080 1.0220   0.0296 
## Hase et al., 2019.2               0.1610  0.0183 0.0003 1.0288   0.0300 
## Hase et al., 2019.3              -0.8196 -0.1001 0.0101 1.0199   0.0295 
## Hase et al., 2019.4              -0.3606 -0.0444 0.0020 1.0274   0.0299 
## Hase et al., 2019.5              -0.3961 -0.0516 0.0027 1.0304   0.0300 
## Hase et al., 2019.6              -0.2932 -0.0386 0.0015 1.0315   0.0300 
## Hase et al., in preparation.3    -0.8314 -0.0915 0.0084 1.0160   0.0295 
## Hase et al., in preparation.4    -0.3439 -0.0382 0.0015 1.0225   0.0298 
## Hase et al., in preparation.5    -0.0654 -0.0080 0.0001 1.0238   0.0299 
## Hase et al., in preparation.6    -1.2063 -0.1317 0.0173 1.0069   0.0290 
## Hase et al., in preparation.7     0.2567  0.0271 0.0007 1.0230   0.0298 
## Hase et al., in preparation.8     0.0546  0.0050 0.0000 1.0238   0.0299 
## Hase et al., in preparation.9     1.9726  0.2134 0.0444 0.9789   0.0276 
## Hase et al., in preparation.10   -1.0078 -0.1073 0.0115 1.0115   0.0293 
## Hase et al., in preparation.11    0.4944  0.0521 0.0027 1.0200   0.0297 
## Hase et al., in preparation.12   -0.4151 -0.0450 0.0020 1.0210   0.0297 
## Hase et al., in preparation.13   -0.4931 -0.0533 0.0029 1.0202   0.0297 
## Hase et al., in preparation.14    0.3320  0.0346 0.0012 1.0216   0.0298 
## Jewiss et al., 2023 (Study 1)     1.4638  0.1679 0.0278 0.9980   0.0285 
## Jewiss et al., 2023 (Study 2).1   0.9973  0.1154 0.0133 1.0132   0.0292 
## Jewiss et al., 2023 (Study 2).2  -0.1120 -0.0140 0.0002 1.0269   0.0299 
## Jewiss et al., 2023 (Study 2).3  -0.2813 -0.0335 0.0011 1.0260   0.0299 
## Jewiss et al., 2023 (Study 2).4   0.5813  0.0666 0.0045 1.0222   0.0297 
## Jewiss et al., 2023 (Study 2).5   0.2298  0.0256 0.0007 1.0262   0.0299 
## Jewiss et al., 2023 (Study 2).6   0.1008  0.0106 0.0001 1.0268   0.0299 
## Jewiss et al., 2023 (Study 2).7  -0.1120 -0.0140 0.0002 1.0269   0.0299 
## Jewiss et al., 2023 (Study 2).8  -0.3235 -0.0384 0.0015 1.0257   0.0299 
## Jewiss et al., 2024              -0.4026 -0.0469 0.0022 1.0242   0.0298 
## Khalaf et al., 2020.1             0.0747  0.0089 0.0001 1.0389   0.0302 
## Khalaf et al., 2020.2             0.1620  0.0210 0.0005 1.0385   0.0302 
## Miller et al., 2021.1             1.1413  0.1217 0.0148 1.0077   0.0291 
## Miller et al., 2021.2             0.8737  0.0929 0.0086 1.0139   0.0294 
## Miller et al., 2021.3             0.1721  0.0175 0.0003 1.0225   0.0298 
## Miller et al., 2021.4             0.6184  0.0654 0.0043 1.0183   0.0296 
## Miller et al., 2021.5            -0.0271 -0.0042 0.0000 1.0270   0.0299 
## Miller et al., 2021.6            -0.9208 -0.1067 0.0114 1.0157   0.0294 
## Miller et al., 2021.7            -0.3761 -0.0409 0.0017 1.0214   0.0298 
## Miller et al., 2021.8             1.9509  0.2088 0.0426 0.9803   0.0277 
## Miller et al., 2021.9            -0.3761 -0.0409 0.0017 1.0214   0.0298 
## Miller et al., 2021.10           -0.2203 -0.0244 0.0006 1.0224   0.0298 
## Moore et al., 2017                0.9692  0.1340 0.0180 1.0198   0.0293 
## O'Brien et al., 2022             -0.5412 -0.0691 0.0048 1.0274   0.0298 
## Petzel & Casad, 2022.1            5.8298  0.9133 0.4847 0.6332   0.0108 
## Petzel & Casad, 2022.2           -1.2444 -0.1623 0.0261 1.0081   0.0288 
## Sammy et al., 2017               -1.2714 -0.1573 0.0245 1.0063   0.0288 
## Scheepers, 2017                   0.9215  0.1283 0.0165 1.0219   0.0294 
## Slater et al., 2018              -0.5718 -0.0777 0.0061 1.0305   0.0299 
## Smith et al., 2022.1             -0.7689 -0.0869 0.0076 1.0181   0.0295 
## Smith et al., 2022.2             -1.5973 -0.1775 0.0310 0.9939   0.0283 
## Smith et al., 2022.3             -2.3473 -0.2571 0.0632 0.9597   0.0266 
## Trotman et al., 2018.2            1.0254  0.1368 0.0187 1.0164   0.0292 
## Wood et al., 2018                -0.5571 -0.0629 0.0040 1.0213   0.0297 
## Scheepers & Keller, 2022         -0.1555 -0.0240 0.0006 1.0418   0.0303 
## Bosshard et al., 2023.2           0.0194  0.0012 0.0000 1.0435   0.0304 
## Simms, 2022.1                     0.2447  0.0262 0.0007 1.0239   0.0298 
## Simms, 2022.2                    -1.2819 -0.1410 0.0198 1.0048   0.0289 
## Simms, 2022.3                    -0.4876 -0.0547 0.0030 1.0219   0.0297 
## Simms, 2022.4                     0.8089  0.0892 0.0080 1.0163   0.0295 
## Simms, 2022.5                    -0.6135 -0.0685 0.0047 1.0202   0.0297 
## Simms, 2022.6                    -0.2691 -0.0307 0.0010 1.0239   0.0298 
##                                   QE.del    hat weight    dfbs inf 
## Arthur et al., 2019.1           193.6978 0.0081 0.8097  0.0835     
## Arthur et al., 2019.2           191.6006 0.0077 0.7745  0.1304     
## Arthur et al., 2019.3           195.3182 0.0077 0.7745 -0.0499     
## Behnke et al., 2024.1           163.7671 0.0250 2.5040 -0.1376     
## Brimmell et al., 2019           182.3373 0.0135 1.3534  0.2741     
## Crowe et al., 2020.1            195.4559 0.0130 1.3027 -0.0090     
## Crowe et al., 2020.2            195.4307 0.0130 1.3027 -0.0523     
## Crowe et al., 2020.3            194.9129 0.0130 1.3027 -0.0907     
## Crowe et al., 2020.4            195.2761 0.0130 1.3027  0.0105     
## Crowe et al., 2020.5            195.2306 0.0130 1.3027 -0.0715     
## Dixon et al., 2019              189.8045 0.0127 1.2664  0.1673     
## Hangen et al., 2019.1           195.4956 0.0225 2.2456 -0.0566     
## Hangen et al., 2019.2           195.5171 0.0225 2.2456 -0.0483     
## Hase et al., 2019.1             194.9966 0.0146 1.4570 -0.0890     
## Hase et al., 2019.2             195.1223 0.0143 1.4293  0.0183     
## Hase et al., 2019.3             194.7758 0.0146 1.4570 -0.1001     
## Hase et al., 2019.4             195.4910 0.0143 1.4293 -0.0444     
## Hase et al., 2019.5             195.4728 0.0161 1.6080 -0.0517     
## Hase et al., 2019.6             195.5158 0.0161 1.6080 -0.0386     
## Hase et al., in preparation.3   194.8445 0.0119 1.1871 -0.0915     
## Hase et al., in preparation.4   195.4930 0.0117 1.1657 -0.0382     
## Hase et al., in preparation.5   195.4679 0.0117 1.1657 -0.0080     
## Hase et al., in preparation.6   193.7563 0.0119 1.1871 -0.1317     
## Hase et al., in preparation.7   195.0806 0.0117 1.1657  0.0270     
## Hase et al., in preparation.8   195.3685 0.0117 1.1657  0.0050     
## Hase et al., in preparation.9   186.9705 0.0114 1.1436  0.2141     
## Hase et al., in preparation.10  194.4289 0.0112 1.1207 -0.1073     
## Hase et al., in preparation.11  194.5921 0.0112 1.1207  0.0520     
## Hase et al., in preparation.12  195.4525 0.0112 1.1207 -0.0450     
## Hase et al., in preparation.13  195.3885 0.0112 1.1207 -0.0532     
## Hase et al., in preparation.14  194.9626 0.0112 1.1207  0.0346     
## Jewiss et al., 2023 (Study 1)   189.7397 0.0128 1.2848  0.1681     
## Jewiss et al., 2023 (Study 2).1 192.3278 0.0132 1.3201  0.1154     
## Jewiss et al., 2023 (Study 2).2 195.4813 0.0132 1.3201 -0.0140     
## Jewiss et al., 2023 (Study 2).3 195.5145 0.0132 1.3201 -0.0335     
## Jewiss et al., 2023 (Study 2).4 194.0983 0.0132 1.3201  0.0666     
## Jewiss et al., 2023 (Study 2).5 195.0488 0.0132 1.3201  0.0256     
## Jewiss et al., 2023 (Study 2).6 195.2694 0.0132 1.3201  0.0106     
## Jewiss et al., 2023 (Study 2).7 195.4813 0.0132 1.3201 -0.0140     
## Jewiss et al., 2023 (Study 2).8 195.5041 0.0132 1.3201 -0.0384     
## Jewiss et al., 2024             195.4640 0.0128 1.2848 -0.0468     
## Khalaf et al., 2020.1           194.9610 0.0191 1.9114  0.0089     
## Khalaf et al., 2020.2           194.6647 0.0191 1.9114  0.0211     
## Miller et al., 2021.1           192.2049 0.0112 1.1207  0.1217     
## Miller et al., 2021.2           193.3667 0.0112 1.1207  0.0928     
## Miller et al., 2021.3           195.2354 0.0112 1.1207  0.0175     
## Miller et al., 2021.4           194.2466 0.0112 1.1207  0.0653     
## Miller et al., 2021.5           195.4195 0.0132 1.3201 -0.0042     
## Miller et al., 2021.6           194.5699 0.0132 1.3201 -0.1067     
## Miller et al., 2021.7           195.4763 0.0112 1.1207 -0.0409     
## Miller et al., 2021.8           187.2771 0.0112 1.1207  0.2095     
## Miller et al., 2021.9           195.4763 0.0112 1.1207 -0.0409     
## Miller et al., 2021.10          195.5174 0.0112 1.1207 -0.0243     
## Moore et al., 2017              189.4170 0.0188 1.8779  0.1340     
## O'Brien et al., 2022            195.3179 0.0157 1.5662 -0.0691     
## Petzel & Casad, 2022.1          130.2561 0.0168 1.6817  0.8829   * 
## Petzel & Casad, 2022.2          192.7979 0.0168 1.6817 -0.1621     
## Sammy et al., 2017              193.0300 0.0152 1.5205 -0.1573     
## Scheepers, 2017                 189.5262 0.0191 1.9114  0.1284     
## Slater et al., 2018             195.2356 0.0178 1.7794 -0.0778     
## Smith et al., 2022.1            194.9636 0.0125 1.2475 -0.0869     
## Smith et al., 2022.2            191.9771 0.0125 1.2475 -0.1778     
## Smith et al., 2022.3            187.2598 0.0125 1.2475 -0.2582     
## Trotman et al., 2018.2          190.0914 0.0174 1.7445  0.1368     
## Wood et al., 2018               195.3168 0.0123 1.2279 -0.0628     
## Scheepers & Keller, 2022        195.3955 0.0207 2.0683 -0.0241     
## Bosshard et al., 2023.2         194.8221 0.0213 2.1324  0.0012     
## Simms, 2022.1                   195.0811 0.0121 1.2078  0.0262     
## Simms, 2022.2                   193.4535 0.0121 1.2078 -0.1411     
## Simms, 2022.3                   195.3939 0.0121 1.2078 -0.0547     
## Simms, 2022.4                   193.4523 0.0121 1.2078  0.0891     
## Simms, 2022.5                   195.2421 0.0121 1.2078 -0.0685     
## Simms, 2022.6                   195.5150 0.0121 1.2078 -0.0307
ranktest(model_fun_CTI)
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## nie można obliczyć dokładnej wartości prawdopodobieństwa z powtórzonymi
## wartościami
## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = 0.0362, p = 0.6596
# leave one out analysis #

leave1out(model_fun_CTI)
## 
##                                 estimate     se   zval   pval  ci.lb  ci.ub 
## Arthur et al., 2019.1             0.0944 0.0274 3.4462 0.0006 0.0407 0.1480 
## Arthur et al., 2019.2             0.0931 0.0272 3.4181 0.0006 0.0397 0.1465 
## Arthur et al., 2019.3             0.0980 0.0274 3.5718 0.0004 0.0442 0.1518 
## Behnke et al., 2024.1             0.1004 0.0277 3.6257 0.0003 0.0461 0.1547 
## Brimmell et al., 2019             0.0894 0.0267 3.3513 0.0008 0.0371 0.1417 
## Crowe et al., 2020.1              0.0969 0.0276 3.5083 0.0005 0.0428 0.1510 
## Crowe et al., 2020.2              0.0981 0.0276 3.5556 0.0004 0.0440 0.1521 
## Crowe et al., 2020.3              0.0991 0.0275 3.6033 0.0003 0.0452 0.1530 
## Crowe et al., 2020.4              0.0964 0.0276 3.4891 0.0005 0.0422 0.1505 
## Crowe et al., 2020.5              0.0986 0.0276 3.5788 0.0003 0.0446 0.1526 
## Dixon et al., 2019                0.0921 0.0272 3.3831 0.0007 0.0388 0.1455 
## Hangen et al., 2019.1             0.0982 0.0278 3.5281 0.0004 0.0436 0.1528 
## Hangen et al., 2019.2             0.0980 0.0278 3.5185 0.0004 0.0434 0.1525 
## Hase et al., 2019.1               0.0991 0.0276 3.5956 0.0003 0.0451 0.1531 
## Hase et al., 2019.2               0.0961 0.0276 3.4775 0.0005 0.0420 0.1503 
## Hase et al., 2019.3               0.0994 0.0275 3.6102 0.0003 0.0454 0.1533 
## Hase et al., 2019.4               0.0979 0.0276 3.5421 0.0004 0.0437 0.1520 
## Hase et al., 2019.5               0.0981 0.0277 3.5442 0.0004 0.0438 0.1523 
## Hase et al., 2019.6               0.0977 0.0277 3.5293 0.0004 0.0434 0.1520 
## Hase et al., in preparation.3     0.0991 0.0275 3.6085 0.0003 0.0453 0.1530 
## Hase et al., in preparation.4     0.0977 0.0276 3.5444 0.0004 0.0437 0.1517 
## Hase et al., in preparation.5     0.0969 0.0276 3.5121 0.0004 0.0428 0.1509 
## Hase et al., in preparation.6     0.1002 0.0274 3.6643 0.0002 0.0466 0.1538 
## Hase et al., in preparation.7     0.0959 0.0276 3.4787 0.0005 0.0419 0.1499 
## Hase et al., in preparation.8     0.0965 0.0276 3.4992 0.0005 0.0425 0.1506 
## Hase et al., in preparation.9     0.0909 0.0270 3.3706 0.0007 0.0380 0.1438 
## Hase et al., in preparation.10    0.0996 0.0274 3.6321 0.0003 0.0458 0.1533 
## Hase et al., in preparation.11    0.0952 0.0275 3.4590 0.0005 0.0413 0.1492 
## Hase et al., in preparation.12    0.0979 0.0275 3.5537 0.0004 0.0439 0.1519 
## Hase et al., in preparation.13    0.0981 0.0275 3.5633 0.0004 0.0441 0.1521 
## Hase et al., in preparation.14    0.0957 0.0275 3.4736 0.0005 0.0417 0.1497 
## Jewiss et al., 2023 (Study 1)     0.0921 0.0272 3.3822 0.0007 0.0387 0.1455 
## Jewiss et al., 2023 (Study 2).1   0.0935 0.0274 3.4078 0.0007 0.0397 0.1473 
## Jewiss et al., 2023 (Study 2).2   0.0970 0.0276 3.5128 0.0004 0.0429 0.1512 
## Jewiss et al., 2023 (Study 2).3   0.0976 0.0276 3.5337 0.0004 0.0434 0.1517 
## Jewiss et al., 2023 (Study 2).4   0.0948 0.0276 3.4407 0.0006 0.0408 0.1488 
## Jewiss et al., 2023 (Study 2).5   0.0959 0.0276 3.4746 0.0005 0.0418 0.1501 
## Jewiss et al., 2023 (Study 2).6   0.0964 0.0276 3.4884 0.0005 0.0422 0.1505 
## Jewiss et al., 2023 (Study 2).7   0.0970 0.0276 3.5128 0.0004 0.0429 0.1512 
## Jewiss et al., 2023 (Study 2).8   0.0977 0.0276 3.5391 0.0004 0.0436 0.1518 
## Jewiss et al., 2024               0.0979 0.0276 3.5500 0.0004 0.0439 0.1520 
## Khalaf et al., 2020.1             0.0964 0.0278 3.4697 0.0005 0.0419 0.1509 
## Khalaf et al., 2020.2             0.0961 0.0278 3.4584 0.0005 0.0416 0.1505 
## Miller et al., 2021.1             0.0933 0.0274 3.4110 0.0006 0.0397 0.1470 
## Miller et al., 2021.2             0.0941 0.0274 3.4289 0.0006 0.0403 0.1479 
## Miller et al., 2021.3             0.0962 0.0276 3.4890 0.0005 0.0421 0.1502 
## Miller et al., 2021.4             0.0949 0.0275 3.4486 0.0006 0.0409 0.1488 
## Miller et al., 2021.5             0.0968 0.0276 3.5028 0.0005 0.0426 0.1509 
## Miller et al., 2021.6             0.0996 0.0275 3.6241 0.0003 0.0457 0.1534 
## Miller et al., 2021.7             0.0978 0.0275 3.5490 0.0004 0.0438 0.1518 
## Miller et al., 2021.8             0.0910 0.0270 3.3728 0.0007 0.0381 0.1439 
## Miller et al., 2021.9             0.0978 0.0275 3.5490 0.0004 0.0438 0.1518 
## Miller et al., 2021.10            0.0973 0.0276 3.5308 0.0004 0.0433 0.1513 
## Moore et al., 2017                0.0930 0.0275 3.3783 0.0007 0.0390 0.1469 
## O'Brien et al., 2022              0.0985 0.0276 3.5666 0.0004 0.0444 0.1527 
## Petzel & Casad, 2022.1            0.0777 0.0217 3.5807 0.0003 0.0352 0.1202 
## Petzel & Casad, 2022.2            0.1010 0.0274 3.6922 0.0002 0.0474 0.1547 
## Sammy et al., 2017                0.1009 0.0273 3.6905 0.0002 0.0473 0.1545 
## Scheepers, 2017                   0.0931 0.0276 3.3802 0.0007 0.0391 0.1471 
## Slater et al., 2018               0.0988 0.0277 3.5699 0.0004 0.0445 0.1530 
## Smith et al., 2022.1              0.0990 0.0275 3.6003 0.0003 0.0451 0.1529 
## Smith et al., 2022.2              0.1014 0.0272 3.7331 0.0002 0.0482 0.1547 
## Smith et al., 2022.3              0.1035 0.0267 3.8759 0.0001 0.0512 0.1558 
## Trotman et al., 2018.2            0.0929 0.0275 3.3813 0.0007 0.0391 0.1468 
## Wood et al., 2018                 0.0984 0.0275 3.5709 0.0004 0.0444 0.1524 
## Scheepers & Keller, 2022          0.0973 0.0278 3.4977 0.0005 0.0428 0.1518 
## Bosshard et al., 2023.2           0.0966 0.0278 3.4697 0.0005 0.0420 0.1512 
## Simms, 2022.1                     0.0959 0.0276 3.4780 0.0005 0.0419 0.1500 
## Simms, 2022.2                     0.1005 0.0273 3.6773 0.0002 0.0469 0.1540 
## Simms, 2022.3                     0.0981 0.0276 3.5619 0.0004 0.0441 0.1521 
## Simms, 2022.4                     0.0942 0.0275 3.4284 0.0006 0.0404 0.1481 
## Simms, 2022.5                     0.0985 0.0275 3.5785 0.0003 0.0446 0.1525 
## Simms, 2022.6                     0.0975 0.0276 3.5345 0.0004 0.0434 0.1515 
##                                        Q     Qp   tau2      I2     H2 
## Arthur et al., 2019.1           193.6978 0.0000 0.0293 67.0244 3.0325 
## Arthur et al., 2019.2           191.6006 0.0000 0.0288 66.6342 2.9971 
## Arthur et al., 2019.3           195.3182 0.0000 0.0295 67.2019 3.0490 
## Behnke et al., 2024.1           163.7671 0.0000 0.0296 59.1347 2.4471 
## Brimmell et al., 2019           182.3373 0.0000 0.0264 64.5720 2.8226 
## Crowe et al., 2020.1            195.4559 0.0000 0.0299 67.3830 3.0659 
## Crowe et al., 2020.2            195.4307 0.0000 0.0298 67.2881 3.0570 
## Crowe et al., 2020.3            194.9129 0.0000 0.0295 67.0806 3.0377 
## Crowe et al., 2020.4            195.2761 0.0000 0.0299 67.3787 3.0655 
## Crowe et al., 2020.5            195.2306 0.0000 0.0297 67.1992 3.0487 
## Dixon et al., 2019              189.8045 0.0000 0.0285 66.3075 2.9680 
## Hangen et al., 2019.1           195.4956 0.0000 0.0303 66.4471 2.9804 
## Hangen et al., 2019.2           195.5171 0.0000 0.0303 66.4788 2.9832 
## Hase et al., 2019.1             194.9966 0.0000 0.0296 67.0995 3.0395 
## Hase et al., 2019.2             195.1223 0.0000 0.0300 67.3749 3.0651 
## Hase et al., 2019.3             194.7758 0.0000 0.0295 67.0200 3.0321 
## Hase et al., 2019.4             195.4910 0.0000 0.0299 67.3227 3.0602 
## Hase et al., 2019.5             195.4728 0.0000 0.0300 67.2866 3.0569 
## Hase et al., 2019.6             195.5158 0.0000 0.0300 67.3296 3.0609 
## Hase et al., in preparation.3   194.8445 0.0000 0.0295 67.0619 3.0360 
## Hase et al., in preparation.4   195.4930 0.0000 0.0298 67.3188 3.0599 
## Hase et al., in preparation.5   195.4679 0.0000 0.0299 67.3677 3.0644 
## Hase et al., in preparation.6   193.7563 0.0000 0.0290 66.7147 3.0043 
## Hase et al., in preparation.7   195.0806 0.0000 0.0298 67.3367 3.0615 
## Hase et al., in preparation.8   195.3685 0.0000 0.0299 67.3671 3.0644 
## Hase et al., in preparation.9   186.9705 0.0000 0.0276 65.6274 2.9093 
## Hase et al., in preparation.10  194.4289 0.0000 0.0293 66.9308 3.0240 
## Hase et al., in preparation.11  194.5921 0.0000 0.0297 67.2513 3.0536 
## Hase et al., in preparation.12  195.4525 0.0000 0.0297 67.2912 3.0573 
## Hase et al., in preparation.13  195.3885 0.0000 0.0297 67.2612 3.0545 
## Hase et al., in preparation.14  194.9626 0.0000 0.0298 67.3112 3.0592 
## Jewiss et al., 2023 (Study 1)   189.7397 0.0000 0.0285 66.2999 2.9674 
## Jewiss et al., 2023 (Study 2).1 192.3278 0.0000 0.0292 66.8663 3.0181 
## Jewiss et al., 2023 (Study 2).2 195.4813 0.0000 0.0299 67.3808 3.0657 
## Jewiss et al., 2023 (Study 2).3 195.5145 0.0000 0.0299 67.3485 3.0626 
## Jewiss et al., 2023 (Study 2).4 194.0983 0.0000 0.0297 67.2072 3.0494 
## Jewiss et al., 2023 (Study 2).5 195.0488 0.0000 0.0299 67.3568 3.0634 
## Jewiss et al., 2023 (Study 2).6 195.2694 0.0000 0.0299 67.3799 3.0656 
## Jewiss et al., 2023 (Study 2).7 195.4813 0.0000 0.0299 67.3808 3.0657 
## Jewiss et al., 2023 (Study 2).8 195.5041 0.0000 0.0299 67.3358 3.0615 
## Jewiss et al., 2024             195.4640 0.0000 0.0298 67.3064 3.0587 
## Khalaf et al., 2020.1           194.9610 0.0000 0.0302 67.2527 3.0537 
## Khalaf et al., 2020.2           194.6647 0.0000 0.0302 67.2364 3.0522 
## Miller et al., 2021.1           192.2049 0.0000 0.0291 66.7858 3.0108 
## Miller et al., 2021.2           193.3667 0.0000 0.0294 67.0223 3.0324 
## Miller et al., 2021.3           195.2354 0.0000 0.0298 67.3478 3.0626 
## Miller et al., 2021.4           194.2466 0.0000 0.0296 67.1901 3.0479 
## Miller et al., 2021.5           195.4195 0.0000 0.0299 67.3860 3.0662 
## Miller et al., 2021.6           194.5699 0.0000 0.0294 66.9614 3.0268 
## Miller et al., 2021.7           195.4763 0.0000 0.0298 67.3043 3.0585 
## Miller et al., 2021.8           187.2771 0.0000 0.0277 65.6962 2.9151 
## Miller et al., 2021.9           195.4763 0.0000 0.0298 67.3043 3.0585 
## Miller et al., 2021.10          195.5174 0.0000 0.0298 67.3432 3.0621 
## Moore et al., 2017              189.4170 0.0000 0.0293 66.5833 2.9925 
## O'Brien et al., 2022            195.3179 0.0000 0.0298 67.2132 3.0500 
## Petzel & Casad, 2022.1          130.2561 0.0000 0.0108 42.4154 1.7366 
## Petzel & Casad, 2022.2          192.7979 0.0000 0.0288 66.3660 2.9732 
## Sammy et al., 2017              193.0300 0.0000 0.0288 66.4475 2.9804 
## Scheepers, 2017                 189.5262 0.0000 0.0294 66.6147 2.9953 
## Slater et al., 2018             195.2356 0.0000 0.0299 67.1155 3.0409 
## Smith et al., 2022.1            194.9636 0.0000 0.0295 67.1010 3.0396 
## Smith et al., 2022.2            191.9771 0.0000 0.0283 66.1631 2.9554 
## Smith et al., 2022.3            187.2598 0.0000 0.0266 64.7484 2.8368 
## Trotman et al., 2018.2          190.0914 0.0000 0.0292 66.6214 2.9959 
## Wood et al., 2018               195.3168 0.0000 0.0297 67.2348 3.0520 
## Scheepers & Keller, 2022        195.3955 0.0000 0.0303 67.0576 3.0356 
## Bosshard et al., 2023.2         194.8221 0.0000 0.0304 66.9462 3.0254 
## Simms, 2022.1                   195.0811 0.0000 0.0298 67.3442 3.0622 
## Simms, 2022.2                   193.4535 0.0000 0.0289 66.6186 2.9957 
## Simms, 2022.3                   195.3939 0.0000 0.0297 67.2680 3.0551 
## Simms, 2022.4                   193.4523 0.0000 0.0295 67.0602 3.0358 
## Simms, 2022.5                   195.2421 0.0000 0.0297 67.2044 3.0492 
## Simms, 2022.6                   195.5150 0.0000 0.0298 67.3434 3.0622
# Egger# 
model_fun_CTI_OutEgger <- rma.mv(yi = CTI_cor_Z, V = CTI_cor_Z_var, random = ~ 1 | paper_id/effect_size_id, mod = ~sqrt(CTI_cor_Z_var), tdist=TRUE, data = Data)
## Warning: 89 rows with NAs omitted from model fitting.
model_fun_CTI_OutEgger
## 
## Multivariate Meta-Analysis Model (k = 73; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0044  0.0664     28     no                 paper_id 
## sigma^2.2  0.0266  0.1630     73     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 71) = 171.9220, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 71) = 0.2902, p-val = 0.5918
## 
## Model Results:
## 
##                      estimate      se    tval  df    pval    ci.lb   ci.ub    
## intrcpt                0.0501  0.1003  0.5001  71  0.6185  -0.1498  0.2501    
## sqrt(CTI_cor_Z_var)    0.3488  0.6474  0.5387  71  0.5918  -0.9421  1.6397    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Run trim-and-fill analysis for the right side
model_fun_CTI_tf_right <- trimfill(model_fun_CTI, side = "right")

# Run trim-and-fill analysis for the left side
model_fun_CTI_tf_left <- trimfill(model_fun_CTI, side = "left")

# Print the trim-and-fill model results
print(model_fun_CTI_tf_right)
## 
## Estimated number of missing studies on the right side: 13 (SE = 5.6241)
## 
## Random-Effects Model (k = 86; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0393 (SE = 0.0098)
## tau (square root of estimated tau^2 value):      0.1983
## I^2 (total heterogeneity / total variability):   71.71%
## H^2 (total variability / sampling variability):  3.54
## 
## Test for Heterogeneity:
## Q(df = 85) = 280.9697, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.1508  0.0276  5.4701  <.0001  0.0968  0.2048  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(model_fun_CTI_tf_left)
## 
## Estimated number of missing studies on the left side: 0 (SE = 4.4604)
## 
## Random-Effects Model (k = 73; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0293 (SE = 0.0088)
## tau (square root of estimated tau^2 value):      0.1710
## I^2 (total heterogeneity / total variability):   66.76%
## H^2 (total variability / sampling variability):  3.01
## 
## Test for Heterogeneity:
## Q(df = 72) = 195.5175, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.0966  0.0273  3.5456  0.0004  0.0432  0.1501  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Combine the number of studies imputed from both sides
total_imputed_studies <- model_fun_CTI_tf_right$k0 + model_fun_CTI_tf_left$k0
cat("Total number of imputed studies (both sides) for CTI:", total_imputed_studies, "\n")
## Total number of imputed studies (both sides) for CTI: 13
# Generate funnel plots only right
#par(mfrow=c(1, 3))
#funnel(model_fun_CTI, main="Original Model")
funnel(model_fun_CTI_tf_right, main="Trim-and-Fill Right", xlab = 'CTI')

#funnel(model_fun_CTI_tf_left, main="Trim-and-Fill Left")

# Return to single plot layout
#par(mfrow=c(1, 1))

7.2 Multilevel Model

model_CTI_multilevel <- rma.mv(yi = CTI_cor_Z, V = CTI_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML")
## Warning: 89 rows with NAs omitted from model fitting.
model_CTI_multilevel
## 
## Multivariate Meta-Analysis Model (k = 73; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0000  0.0000     28     no                 paper_id 
## sigma^2.2  0.0293  0.1710     73     no  paper_id/effect_size_id 
## 
## Test for Heterogeneity:
## Q(df = 72) = 195.5175, p-val < .0001
## 
## Model Results:
## 
## estimate      se    tval  df    pval   ci.lb   ci.ub      
##   0.0966  0.0273  3.5456  72  0.0007  0.0423  0.1510  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
convert_z2r(0.1150)
## [1] 0.1144957
predict_CTI <-predict(model_CTI_multilevel, digits=3, transf=transf.ztor, level = 95)
predict_CTI
## 
##   pred ci.lb ci.ub  pi.lb pi.ub 
##  0.096 0.042 0.150 -0.244 0.415
forest.rma(model_CTI_multilevel, header = "CTI",slab = Data$Ref_APA, alim=c(-1,1.6))

######## list 1 ########
list_CTI <- Data$CTI_cor_Z_var

############ sum 1#####################
sum_CTI <- sum(list_CTI, na.rm = TRUE)

###################### sum 2 #####################
sum2_CTI <- (sum_CTI)^2

####################### list 2 ##############
list_In_CTI <- Data$CTI_cor_Z_var_Sq

#################### sum 3 #######################
sum_In_CTI<- sum(list_In_CTI, na.rm = TRUE)

############### numerator ##############
numerator_CTI<- (model_CTI_multilevel$k-1)*sum_CTI

############# denominator #############
denominator_CTI<- sum2_CTI - sum_In_CTI

############## eps ################
EPS_CTI<- numerator_CTI / denominator_CTI

############### i2 1 level ##################
I2_1_CTI <- (EPS_CTI) / (model_CTI_multilevel$sigma2[1] + model_CTI_multilevel$sigma2[2] + EPS_CTI) *100
I2_1_CTI
## [1] 99.91892
############## i2 2 level #################
I2_2_CTI <- (model_CTI_multilevel$sigma2[1]) / (model_CTI_multilevel$sigma2[1] + model_CTI_multilevel$sigma2[2] + EPS_CTI) *100
I2_2_CTI
## [1] 9.976715e-10
########### I2 level 3
I2_3_CTI <- (model_CTI_multilevel$sigma2[2]) / (model_CTI_multilevel$sigma2[1] + model_CTI_multilevel$sigma2[2] + EPS_CTI) *100
I2_3_CTI
## [1] 0.08107815
############### ML without level 2 ##########
model_CTI_multilevel_2 <- rma.mv(yi = CTI_cor_Z, V = CTI_cor_Z_var, slab = Ref_APA, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", sigma2=c(0,NA), tdist=TRUE,data = Data)
## Warning: 89 rows with NAs omitted from model fitting.
############# ml without level 3 ###########
model_CTI_multilevel_3 <- rma.mv(yi = CTI_cor_Z, V = CTI_cor_Z_var, slab = Ref_APA, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", sigma2=c(NA,0), tdist=TRUE,data = Data)
## Warning: 89 rows with NAs omitted from model fitting.
##################### sig level 2 #######################
anova12_CTI <- anova(model_CTI_multilevel,model_CTI_multilevel_2)
anova12_CTI
## 
##         df     AIC    BIC    AICc logLik    LRT   pval       QE 
## Full     3  0.9258 7.7558  1.2787 2.5371               195.5175 
## Reduced  2 -1.0742 3.4791 -0.9003 2.5371 0.0000 1.0000 195.5175
###############sig level 3v #################
anova13_CTI <- anova(model_CTI_multilevel,model_CTI_multilevel_3)
anova13_CTI
## 
##         df     AIC     BIC    AICc  logLik     LRT   pval       QE 
## Full     3  0.9258  7.7558  1.2787  2.5371                195.5175 
## Reduced  2 17.3488 21.9021 17.5227 -6.6744 18.4230 <.0001 195.5175

8. Cognitive Challenge and Threat Index

8.1 Identyfing outliers

# Cogni
model_fun_Cogni <- rma(yi = Cogni_cor_Z, vi= Cogni_cor_Z_var, data = Data, slab = Ref_APA)
## Warning: 41 studies with NAs omitted from model fitting.
model_fun_Cogni
## 
## Random-Effects Model (k = 121; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0209 (SE = 0.0046)
## tau (square root of estimated tau^2 value):      0.1445
## I^2 (total heterogeneity / total variability):   72.22%
## H^2 (total variability / sampling variability):  3.60
## 
## Test for Heterogeneity:
## Q(df = 120) = 377.1303, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.1426  0.0176  8.0869  <.0001  0.1080  0.1771  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# outliers diagnostics  - outlier rstudent > 3.0 #
Out_model_fun_Cogni <- influence(model_fun_Cogni)
Out_model_fun_Cogni
## 
##                                    rstudent  dffits cook.d  cov.r tau2.del 
## Baumgartner & Schneider, 2023        0.6951  0.0742 0.0055 1.0158   0.0211 
## Behnke et al., 2020.1                1.0369  0.1010 0.0102 1.0102   0.0209 
## Behnke et al., 2020.2                0.2726  0.0338 0.0012 1.0180   0.0212 
## Behnke et al., 2022                  0.5509  0.0750 0.0057 1.0249   0.0212 
## Behnke et al., 2024.1               -0.4259 -0.0425 0.0018 1.0253   0.0212 
## Brimmell et al., 2019                1.0899  0.0896 0.0080 1.0069   0.0209 
## Cabral et al., 2024.1               -0.0635  0.0014 0.0000 1.0179   0.0212 
## Cabral et al., 2024.2                0.0474  0.0122 0.0001 1.0181   0.0212 
## Cabral et al., 2024.3               -0.1187 -0.0041 0.0000 1.0178   0.0212 
## Carenzo et al., 2020.1              -2.9849 -0.4105 0.1512 0.9269   0.0181 
## Carenzo et al., 2020.2               2.9348  0.2503 0.0571 0.9391   0.0185 
## Gurera & Isaacowitz, 2022.1          0.0629  0.0133 0.0002 1.0175   0.0212 
## Gurera & Isaacowitz, 2022.2          0.9287  0.0899 0.0081 1.0114   0.0210 
## Gurera & Isaacowitz, 2022.3          0.1302  0.0170 0.0003 1.0141   0.0211 
## Gurera & Isaacowitz, 2022.4         -0.6745 -0.0547 0.0030 1.0100   0.0210 
## Hase et al., 2019.1                 -0.2894 -0.0196 0.0004 1.0134   0.0211 
## Hase et al., 2019.2                  0.3804  0.0378 0.0014 1.0135   0.0211 
## Hase et al., 2019.3                 -2.1304 -0.2053 0.0413 0.9809   0.0200 
## Hase et al., 2019.4                 -1.2910 -0.1146 0.0131 1.0010   0.0207 
## Hase et al., 2019.5                  1.1090  0.1007 0.0101 1.0081   0.0209 
## Hase et al., 2019.6                  1.0580  0.0968 0.0094 1.0089   0.0209 
## Hase et al., in preparation.1       -1.9693 -0.1839 0.0333 0.9859   0.0202 
## Hase et al., in preparation.2       -0.4694 -0.0355 0.0013 1.0117   0.0210 
## Hase et al., in preparation.3       -0.0941 -0.0025 0.0000 1.0111   0.0211 
## Hase et al., in preparation.4        0.7580  0.0598 0.0036 1.0088   0.0210 
## Hase et al., in preparation.5        1.0974  0.0826 0.0068 1.0059   0.0209 
## Hase et al., in preparation.6       -1.4914 -0.1202 0.0144 0.9975   0.0206 
## Hase et al., in preparation.7       -0.7349 -0.0538 0.0029 1.0073   0.0209 
## Hase et al., in preparation.8       -1.2097 -0.0941 0.0088 1.0018   0.0208 
## Hase et al., in preparation.9       -0.7691 -0.0561 0.0031 1.0068   0.0209 
## Hase et al., in preparation.10       0.6042  0.0479 0.0023 1.0094   0.0210 
## Hase et al., in preparation.11      -0.6767 -0.0480 0.0023 1.0074   0.0210 
## Hase et al., in preparation.12      -0.1753 -0.0087 0.0001 1.0102   0.0210 
## Hase et al., in preparation.13      -0.0064  0.0040 0.0000 1.0105   0.0211 
## Hase et al., in preparation.14      -0.3430 -0.0216 0.0005 1.0096   0.0210 
## Jamieson et al., 2022.1              1.7000  0.1788 0.0311 0.9930   0.0202 
## Jamieson et al., 2022.2              2.2201  0.2132 0.0430 0.9717   0.0195 
## Jamieson et al., 2022.3              1.7107  0.1669 0.0273 0.9939   0.0203 
## Journault et al., in preparation.1   1.6881  0.1767 0.0304 0.9936   0.0202 
## Journault et al., in preparation.2   0.4541  0.0605 0.0037 1.0234   0.0212 
## Journault et al., in preparation.3   1.0794  0.1228 0.0151 1.0128   0.0209 
## Khalaf et al., 2020.1                1.2190  0.1213 0.0147 1.0075   0.0208 
## Khalaf et al., 2020.2                1.0883  0.1103 0.0122 1.0102   0.0209 
## Laurin & Pellet, 2023               -0.1477 -0.0065 0.0000 1.0277   0.0213 
## Lee et al., 2019                    -0.6117 -0.0655 0.0043 1.0207   0.0211 
## Malkoc et al., 2023                 -0.5209 -0.0533 0.0029 1.0218   0.0212 
## Malkoc et al., 2024                 -0.2157 -0.0149 0.0002 1.0253   0.0213 
## Moe & Putwain, 2020.1                1.1301  0.1016 0.0103 1.0076   0.0209 
## Moe & Putwain, 2020.2                0.4469  0.0463 0.0022 1.0150   0.0211 
## Moe & Putwain, 2020.3                0.5825  0.0578 0.0034 1.0141   0.0211 
## Moe & Putwain, 2020.4                0.4093  0.0431 0.0019 1.0152   0.0211 
## Moe & Putwain, 2020.5                0.5226  0.0527 0.0028 1.0145   0.0211 
## Moe & Putwain, 2020.6                0.9793  0.0899 0.0081 1.0098   0.0209 
## Moe & Putwain, 2020.7                0.5118  0.0518 0.0027 1.0146   0.0211 
## Moore et al., 2017                   1.1401  0.1134 0.0128 1.0090   0.0209 
## Mosley et al., 2018.1               -0.9855 -0.0854 0.0073 1.0063   0.0209 
## Mosley et al., 2018.2               -0.4972 -0.0387 0.0015 1.0120   0.0210 
## Mulvenna et al., 2023.1             -0.4669 -0.0457 0.0021 1.0219   0.0212 
## Mulvenna et al., 2023.2             -0.2711 -0.0215 0.0005 1.0241   0.0213 
## O'Brien et al., 2022                -1.6605 -0.1619 0.0259 0.9927   0.0204 
## Sammy et al., 2017                   1.6633  0.1368 0.0186 0.9973   0.0205 
## Schickel et al., 2023.1             -0.0682  0.0016 0.0000 1.0208   0.0212 
## Schickel et al., 2023.2              0.6618  0.0744 0.0056 1.0175   0.0211 
## Sharpe et al., 2024.1                0.2546  0.0241 0.0006 1.0112   0.0211 
## Sharpe et al., 2024.2               -1.3253 -0.1245 0.0154 1.0005   0.0206 
## Sharpe et al., 2024.3                1.9858  0.1311 0.0171 0.9934   0.0205 
## Thornton et al., 2020.1             -0.3631 -0.0304 0.0009 1.0189   0.0212 
## Thornton et al., 2020.2             -0.5396 -0.0503 0.0025 1.0170   0.0211 
## Trotman et al., 2018.1               0.5538  0.0589 0.0035 1.0160   0.0211 
## Trotman et al., 2018.2              -0.2277 -0.0150 0.0002 1.0171   0.0212 
## Turner et al., 2021.1                0.1059  0.0185 0.0003 1.0191   0.0212 
## Turner et al., 2021.2                0.9351  0.0946 0.0090 1.0123   0.0210 
## Turner et al., 2021.3               -0.1219 -0.0043 0.0000 1.0187   0.0212 
## Wood et al., 2018                    1.1312  0.0874 0.0076 1.0058   0.0209 
## Scheepers & Keller, 2022             0.6364  0.0743 0.0056 1.0188   0.0211 
## Bosshard et al., 2023.1              0.3778  0.0510 0.0026 1.0230   0.0212 
## Mansell, 2023.1                     -1.1740 -0.1264 0.0159 1.0050   0.0207 
## Mansell, 2023.2                     -1.3615 -0.1503 0.0223 1.0000   0.0205 
## Jamieson et al., 2021.1              1.4866  0.1630 0.0261 1.0008   0.0205 
## Jamieson et al., 2021.2              0.9583  0.1139 0.0130 1.0162   0.0210 
## Sharpe et al., 2024.4               -1.4100 -0.0962 0.0092 0.9990   0.0207 
## Sharpe et al., 2024.5               -0.9652 -0.0634 0.0040 1.0036   0.0209 
## Sharpe et al., 2024.6               -0.3155 -0.0177 0.0003 1.0076   0.0210 
## Sharpe et al., 2024.7               -0.5930 -0.0369 0.0014 1.0063   0.0210 
## Sharpe et al., 2024.8               -1.3708 -0.0933 0.0087 0.9994   0.0207 
## Sharpe et al., 2024.9               -1.7281 -0.1204 0.0144 0.9947   0.0206 
## Sharpe et al., 2024.10              -0.5745 -0.0356 0.0013 1.0064   0.0210 
## Sharpe et al., 2024.11              -0.6189 -0.0387 0.0015 1.0061   0.0210 
## Sharpe et al., 2024.12              -0.4763 -0.0198 0.0004 1.0030   0.0209 
## Sharpe et al., 2024.13              -0.7951 -0.0345 0.0012 1.0021   0.0209 
## Sharpe et al., 2024.14               0.1206  0.0069 0.0000 1.0038   0.0210 
## Sharpe et al., 2024.15              -0.2139 -0.0079 0.0001 1.0035   0.0209 
## Simms, 2022.1                        0.1358  0.0154 0.0002 1.0116   0.0211 
## Simms, 2022.2                        0.3480  0.0314 0.0010 1.0112   0.0211 
## Simms, 2022.3                       -0.3100 -0.0197 0.0004 1.0106   0.0210 
## Simms, 2022.4                       -0.4627 -0.0322 0.0010 1.0097   0.0210 
## Simms, 2022.5                       -0.0156  0.0037 0.0000 1.0115   0.0211 
## Simms, 2022.6                       -1.0707 -0.0838 0.0070 1.0038   0.0208 
## Marr et al., 2021                    0.4656  0.0586 0.0035 1.0213   0.0212 
## Conlon et al., 2022.1                1.4311  0.1269 0.0160 1.0022   0.0207 
## Conlon et al., 2022.2                0.8707  0.0835 0.0070 1.0118   0.0210 
## van Gog et al., 2024.1              -0.5458 -0.0470 0.0022 1.0140   0.0211 
## van Gog et al., 2024.2              -0.5993 -0.0525 0.0028 1.0134   0.0210 
## van Gog et al., 2024.3              -0.9314 -0.0840 0.0071 1.0078   0.0209 
## van Gog et al., 2024.4              -0.6238 -0.0528 0.0028 1.0119   0.0210 
## van Gog et al., 2024.5              -0.3600 -0.0266 0.0007 1.0137   0.0211 
## van Gog et al., 2024.6               0.1454  0.0192 0.0004 1.0152   0.0211 
## van Gog et al., 2024.7              -0.4333 -0.0351 0.0012 1.0147   0.0211 
## van Gog et al., 2024.8              -1.1237 -0.1077 0.0116 1.0049   0.0208 
## van Gog et al., 2024.9              -1.6375 -0.1571 0.0244 0.9934   0.0204 
## van Gog et al., 2024.10              0.4059  0.0417 0.0018 1.0146   0.0211 
## van Gog et al., 2024.11             -0.4485 -0.0341 0.0012 1.0123   0.0211 
## van Gog et al., 2024.12             -0.3509 -0.0252 0.0006 1.0130   0.0211 
## van Gog et al., 2024.13             -0.8418 -0.0759 0.0058 1.0095   0.0209 
## van Gog et al., 2024.14             -0.5817 -0.0493 0.0024 1.0128   0.0210 
## van Gog et al., 2024.15             -1.2941 -0.1275 0.0161 1.0014   0.0206 
## van Gog et al., 2024.16             -0.0618  0.0013 0.0000 1.0170   0.0212 
## van Gog et al., 2024.17             -0.7555 -0.0685 0.0047 1.0112   0.0210 
## van Gog et al., 2024.18             -1.6826 -0.1726 0.0293 0.9915   0.0203 
## van Gog et al., 2024.19             -0.6509 -0.0577 0.0033 1.0127   0.0210 
## van Gog et al., 2024.20              0.1551  0.0218 0.0005 1.0172   0.0212 
##                                      QE.del    hat weight    dfbs inf 
## Baumgartner & Schneider, 2023      376.0458 0.0098 0.9785  0.0742     
## Behnke et al., 2020.1              374.7321 0.0093 0.9263  0.1010     
## Behnke et al., 2020.2              377.0359 0.0093 0.9263  0.0338     
## Behnke et al., 2022                371.4928 0.0143 1.4307  0.0752     
## Behnke et al., 2024.1              360.0503 0.0146 1.4585 -0.0426     
## Brimmell et al., 2019              375.2546 0.0067 0.6678  0.0896     
## Cabral et al., 2024.1              377.0734 0.0092 0.9173  0.0014     
## Cabral et al., 2024.2              377.1268 0.0092 0.9173  0.0122     
## Cabral et al., 2024.3              377.0228 0.0092 0.9173 -0.0041     
## Carenzo et al., 2020.1             341.0679 0.0114 1.1383 -0.4063   * 
## Carenzo et al., 2020.2             345.7446 0.0114 1.1383  0.2481     
## Gurera & Isaacowitz, 2022.1        377.1294 0.0088 0.8834  0.0133     
## Gurera & Isaacowitz, 2022.2        375.3689 0.0088 0.8834  0.0899     
## Gurera & Isaacowitz, 2022.3        377.1242 0.0071 0.7125  0.0170     
## Gurera & Isaacowitz, 2022.4        376.0585 0.0071 0.7125 -0.0547     
## Hase et al., 2019.1                376.8703 0.0073 0.7290 -0.0196     
## Hase et al., 2019.2                376.9498 0.0071 0.7125  0.0377     
## Hase et al., 2019.3                367.8462 0.0073 0.7290 -0.2059     
## Hase et al., 2019.4                373.5908 0.0071 0.7125 -0.1147     
## Hase et al., 2019.5                374.7727 0.0082 0.8213  0.1007     
## Hase et al., 2019.6                374.9992 0.0082 0.8213  0.0968     
## Hase et al., in preparation.1      369.3800 0.0070 0.7039 -0.1844     
## Hase et al., in preparation.2      376.5717 0.0070 0.7039 -0.0355     
## Hase et al., in preparation.3      377.0886 0.0057 0.5731 -0.0025     
## Hase et al., in preparation.4      376.3613 0.0056 0.5612  0.0598     
## Hase et al., in preparation.5      375.4259 0.0056 0.5612  0.0826     
## Hase et al., in preparation.6      373.2222 0.0057 0.5731 -0.1203     
## Hase et al., in preparation.7      376.1049 0.0056 0.5612 -0.0538     
## Hase et al., in preparation.8      374.5367 0.0056 0.5612 -0.0942     
## Hase et al., in preparation.9      376.0320 0.0055 0.5490 -0.0560     
## Hase et al., in preparation.10     376.6744 0.0054 0.5364  0.0479     
## Hase et al., in preparation.11     376.2748 0.0054 0.5364 -0.0479     
## Hase et al., in preparation.12     377.0408 0.0054 0.5364 -0.0087     
## Hase et al., in preparation.13     377.1226 0.0054 0.5364  0.0040     
## Hase et al., in preparation.14     376.8717 0.0054 0.5364 -0.0216     
## Jamieson et al., 2022.1            356.9870 0.0130 1.3021  0.1780     
## Jamieson et al., 2022.2            352.6334 0.0123 1.2276  0.2118     
## Jamieson et al., 2022.3            366.8627 0.0112 1.1165  0.1666     
## Journault et al., in preparation.1 358.8824 0.0129 1.2858  0.1760     
## Journault et al., in preparation.2 376.2039 0.0128 1.2811  0.0606     
## Journault et al., in preparation.3 370.1425 0.0128 1.2817  0.1228     
## Khalaf et al., 2020.1              373.0985 0.0102 1.0187  0.1212     
## Khalaf et al., 2020.2              373.9681 0.0102 1.0187  0.1103     
## Laurin & Pellet, 2023              374.9994 0.0144 1.4383 -0.0065     
## Lee et al., 2019                   371.1765 0.0136 1.3567 -0.0656     
## Malkoc et al., 2023                373.2067 0.0134 1.3370 -0.0534     
## Malkoc et al., 2024                376.1061 0.0134 1.3370 -0.0149     
## Moe & Putwain, 2020.1              374.7188 0.0081 0.8085  0.1016     
## Moe & Putwain, 2020.2              376.8328 0.0081 0.8085  0.0463     
## Moe & Putwain, 2020.3              376.5738 0.0081 0.8085  0.0577     
## Moe & Putwain, 2020.4              376.8905 0.0081 0.8085  0.0430     
## Moe & Putwain, 2020.5              376.6981 0.0081 0.8085  0.0527     
## Moe & Putwain, 2020.6              375.3578 0.0081 0.8085  0.0899     
## Moe & Putwain, 2020.7              376.7189 0.0081 0.8085  0.0518     
## Moore et al., 2017                 373.7907 0.0100 0.9960  0.1134     
## Mosley et al., 2018.1              374.9393 0.0073 0.7290 -0.0854     
## Mosley et al., 2018.2              376.4897 0.0073 0.7290 -0.0386     
## Mulvenna et al., 2023.1            374.6075 0.0129 1.2946 -0.0458     
## Mulvenna et al., 2023.2            376.0461 0.0129 1.2946 -0.0216     
## O'Brien et al., 2022               370.7560 0.0080 0.7953 -0.1621     
## Sammy et al., 2017                 371.9932 0.0077 0.7673  0.1369     
## Schickel et al., 2023.1            377.0414 0.0106 1.0634  0.0016     
## Schickel et al., 2023.2            375.9794 0.0106 1.0634  0.0744     
## Sharpe et al., 2024.1              377.0726 0.0057 0.5731  0.0241     
## Sharpe et al., 2024.2              372.9904 0.0079 0.7885 -0.1246     
## Sharpe et al., 2024.3              371.5501 0.0051 0.5103  0.1315     
## Thornton et al., 2020.1            376.4190 0.0106 1.0557 -0.0304     
## Thornton et al., 2020.2            375.7601 0.0106 1.0557 -0.0503     
## Trotman et al., 2018.1             376.5610 0.0091 0.9080  0.0589     
## Trotman et al., 2018.2             376.8810 0.0091 0.9080 -0.0150     
## Turner et al., 2021.1              377.1292 0.0097 0.9673  0.0185     
## Turner et al., 2021.2              375.0714 0.0097 0.9673  0.0946     
## Turner et al., 2021.3              377.0060 0.0097 0.9673 -0.0043     
## Wood et al., 2018                  375.2492 0.0060 0.5960  0.0874     
## Scheepers & Keller, 2022           375.9007 0.0113 1.1277  0.0743     
## Bosshard et al., 2023.1            376.6850 0.0122 1.2198  0.0510     
## Mansell, 2023.1                    371.6856 0.0106 1.0557 -0.1263     
## Mansell, 2023.2                    369.9919 0.0106 1.0557 -0.1502     
## Jamieson et al., 2021.1            357.7120 0.0134 1.3411  0.1625     
## Jamieson et al., 2021.2            369.5351 0.0134 1.3411  0.1140     
## Sharpe et al., 2024.4              374.1431 0.0042 0.4227 -0.0964     
## Sharpe et al., 2024.5              375.6769 0.0042 0.4227 -0.0634     
## Sharpe et al., 2024.6              376.9371 0.0042 0.4227 -0.0177     
## Sharpe et al., 2024.7              376.5420 0.0042 0.4227 -0.0369     
## Sharpe et al., 2024.8              374.3001 0.0042 0.4227 -0.0934     
## Sharpe et al., 2024.9              372.7159 0.0042 0.4227 -0.1207     
## Sharpe et al., 2024.10             376.5750 0.0042 0.4227 -0.0356     
## Sharpe et al., 2024.11             376.4942 0.0042 0.4227 -0.0387     
## Sharpe et al., 2024.12             376.8276 0.0019 0.1898 -0.0198     
## Sharpe et al., 2024.13             376.3362 0.0019 0.1898 -0.0345     
## Sharpe et al., 2024.14             377.1225 0.0019 0.1898  0.0069     
## Sharpe et al., 2024.15             377.0577 0.0019 0.1898 -0.0079     
## Simms, 2022.1                      377.1225 0.0058 0.5847  0.0153     
## Simms, 2022.2                      377.0001 0.0058 0.5847  0.0314     
## Simms, 2022.3                      376.8966 0.0058 0.5847 -0.0197     
## Simms, 2022.4                      376.6692 0.0058 0.5847 -0.0322     
## Simms, 2022.5                      377.1191 0.0058 0.5847  0.0037     
## Simms, 2022.6                      375.0108 0.0058 0.5847 -0.0839     
## Marr et al., 2021                  376.4851 0.0117 1.1666  0.0587     
## Conlon et al., 2022.1              372.9087 0.0085 0.8510  0.1270     
## Conlon et al., 2022.2              375.6734 0.0085 0.8510  0.0835     
## van Gog et al., 2024.1             376.1680 0.0088 0.8783 -0.0470     
## van Gog et al., 2024.2             375.9976 0.0088 0.8783 -0.0525     
## van Gog et al., 2024.3             374.9298 0.0080 0.8020 -0.0840     
## van Gog et al., 2024.4             376.0623 0.0080 0.8020 -0.0528     
## van Gog et al., 2024.5             376.7364 0.0077 0.7673 -0.0266     
## van Gog et al., 2024.6             377.1206 0.0077 0.7673  0.0192     
## van Gog et al., 2024.7             376.5062 0.0086 0.8567 -0.0351     
## van Gog et al., 2024.8             373.7382 0.0086 0.8567 -0.1077     
## van Gog et al., 2024.9             371.1049 0.0077 0.7745 -0.1572     
## van Gog et al., 2024.10            376.9044 0.0077 0.7745  0.0417     
## van Gog et al., 2024.11            376.5941 0.0073 0.7290 -0.0341     
## van Gog et al., 2024.12            376.7752 0.0073 0.7290 -0.0252     
## van Gog et al., 2024.13            375.2250 0.0083 0.8274 -0.0759     
## van Gog et al., 2024.14            376.1459 0.0083 0.8274 -0.0493     
## van Gog et al., 2024.15            372.6448 0.0087 0.8677 -0.1275     
## van Gog et al., 2024.16            377.0808 0.0087 0.8677  0.0013     
## van Gog et al., 2024.17            375.4537 0.0087 0.8677 -0.0685     
## van Gog et al., 2024.18            369.8239 0.0087 0.8677 -0.1727     
## van Gog et al., 2024.19            375.8325 0.0087 0.8730 -0.0577     
## van Gog et al., 2024.20            377.1173 0.0087 0.8730  0.0218
ranktest(model_fun_Cogni)
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## nie można obliczyć dokładnej wartości prawdopodobieństwa z powtórzonymi
## wartościami
## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.1557, p = 0.0121
# leave one out analysis #

leave1out(model_fun_Cogni)
## 
##                                    estimate     se   zval   pval  ci.lb  ci.ub 
## Baumgartner & Schneider, 2023        0.1412 0.0178 7.9500 0.0000 0.1064 0.1761 
## Behnke et al., 2020.1                0.1408 0.0177 7.9452 0.0000 0.1060 0.1755 
## Behnke et al., 2020.2                0.1420 0.0178 7.9815 0.0000 0.1071 0.1768 
## Behnke et al., 2022                  0.1412 0.0178 7.9132 0.0000 0.1062 0.1762 
## Behnke et al., 2024.1                0.1433 0.0178 8.0288 0.0000 0.1083 0.1783 
## Brimmell et al., 2019                0.1410 0.0177 7.9697 0.0000 0.1063 0.1756 
## Cabral et al., 2024.1                0.1425 0.0178 8.0139 0.0000 0.1077 0.1774 
## Cabral et al., 2024.2                0.1423 0.0178 8.0024 0.0000 0.1075 0.1772 
## Cabral et al., 2024.3                0.1426 0.0178 8.0201 0.0000 0.1078 0.1775 
## Carenzo et al., 2020.1               0.1494 0.0170 8.8035 0.0000 0.1161 0.1827 
## Carenzo et al., 2020.2               0.1383 0.0171 8.0983 0.0000 0.1049 0.1718 
## Gurera & Isaacowitz, 2022.1          0.1423 0.0178 8.0039 0.0000 0.1075 0.1772 
## Gurera & Isaacowitz, 2022.2          0.1410 0.0177 7.9516 0.0000 0.1062 0.1757 
## Gurera & Isaacowitz, 2022.3          0.1423 0.0178 8.0136 0.0000 0.1075 0.1770 
## Gurera & Isaacowitz, 2022.4          0.1435 0.0177 8.1011 0.0000 0.1088 0.1782 
## Hase et al., 2019.1                  0.1429 0.0177 8.0528 0.0000 0.1081 0.1777 
## Hase et al., 2019.2                  0.1419 0.0177 7.9951 0.0000 0.1071 0.1767 
## Hase et al., 2019.3                  0.1461 0.0175 8.3703 0.0000 0.1119 0.1804 
## Hase et al., 2019.4                  0.1446 0.0176 8.1969 0.0000 0.1100 0.1791 
## Hase et al., 2019.5                  0.1408 0.0177 7.9542 0.0000 0.1061 0.1755 
## Hase et al., 2019.6                  0.1408 0.0177 7.9549 0.0000 0.1061 0.1755 
## Hase et al., in preparation.1        0.1458 0.0175 8.3283 0.0000 0.1115 0.1801 
## Hase et al., in preparation.2        0.1432 0.0177 8.0752 0.0000 0.1084 0.1779 
## Hase et al., in preparation.3        0.1426 0.0177 8.0448 0.0000 0.1079 0.1773 
## Hase et al., in preparation.4        0.1415 0.0177 7.9918 0.0000 0.1068 0.1762 
## Hase et al., in preparation.5        0.1411 0.0177 7.9808 0.0000 0.1064 0.1757 
## Hase et al., in preparation.6        0.1447 0.0176 8.2170 0.0000 0.1102 0.1792 
## Hase et al., in preparation.7        0.1435 0.0177 8.1112 0.0000 0.1088 0.1782 
## Hase et al., in preparation.8        0.1442 0.0176 8.1734 0.0000 0.1096 0.1788 
## Hase et al., in preparation.9        0.1435 0.0177 8.1154 0.0000 0.1089 0.1782 
## Hase et al., in preparation.10       0.1417 0.0177 8.0016 0.0000 0.1070 0.1764 
## Hase et al., in preparation.11       0.1434 0.0177 8.1048 0.0000 0.1087 0.1781 
## Hase et al., in preparation.12       0.1427 0.0177 8.0547 0.0000 0.1080 0.1774 
## Hase et al., in preparation.13       0.1425 0.0177 8.0406 0.0000 0.1078 0.1772 
## Hase et al., in preparation.14       0.1429 0.0177 8.0701 0.0000 0.1082 0.1776 
## Jamieson et al., 2022.1              0.1394 0.0176 7.9385 0.0000 0.1050 0.1739 
## Jamieson et al., 2022.2              0.1389 0.0174 7.9933 0.0000 0.1048 0.1730 
## Jamieson et al., 2022.3              0.1396 0.0176 7.9460 0.0000 0.1052 0.1741 
## Journault et al., in preparation.1   0.1395 0.0176 7.9381 0.0000 0.1050 0.1739 
## Journault et al., in preparation.2   0.1415 0.0178 7.9335 0.0000 0.1065 0.1764 
## Journault et al., in preparation.3   0.1404 0.0177 7.9137 0.0000 0.1056 0.1752 
## Khalaf et al., 2020.1                0.1404 0.0177 7.9362 0.0000 0.1057 0.1751 
## Khalaf et al., 2020.2                0.1406 0.0177 7.9362 0.0000 0.1059 0.1753 
## Laurin & Pellet, 2023                0.1427 0.0179 7.9837 0.0000 0.1076 0.1777 
## Lee et al., 2019                     0.1437 0.0178 8.0698 0.0000 0.1088 0.1786 
## Malkoc et al., 2023                  0.1435 0.0178 8.0529 0.0000 0.1086 0.1784 
## Malkoc et al., 2024                  0.1428 0.0178 8.0013 0.0000 0.1078 0.1778 
## Moe & Putwain, 2020.1                0.1408 0.0177 7.9551 0.0000 0.1061 0.1754 
## Moe & Putwain, 2020.2                0.1417 0.0178 7.9808 0.0000 0.1069 0.1765 
## Moe & Putwain, 2020.3                0.1415 0.0178 7.9730 0.0000 0.1067 0.1763 
## Moe & Putwain, 2020.4                0.1418 0.0178 7.9833 0.0000 0.1070 0.1766 
## Moe & Putwain, 2020.5                0.1416 0.0178 7.9763 0.0000 0.1068 0.1764 
## Moe & Putwain, 2020.6                0.1410 0.0177 7.9578 0.0000 0.1062 0.1757 
## Moe & Putwain, 2020.7                0.1416 0.0178 7.9769 0.0000 0.1068 0.1764 
## Moore et al., 2017                   0.1406 0.0177 7.9380 0.0000 0.1059 0.1753 
## Mosley et al., 2018.1                0.1441 0.0177 8.1467 0.0000 0.1094 0.1787 
## Mosley et al., 2018.2                0.1432 0.0177 8.0775 0.0000 0.1085 0.1780 
## Mulvenna et al., 2023.1              0.1434 0.0178 8.0452 0.0000 0.1084 0.1783 
## Mulvenna et al., 2023.2              0.1429 0.0178 8.0127 0.0000 0.1080 0.1779 
## O'Brien et al., 2022                 0.1454 0.0176 8.2780 0.0000 0.1110 0.1798 
## Sammy et al., 2017                   0.1402 0.0176 7.9613 0.0000 0.1056 0.1747 
## Schickel et al., 2023.1              0.1425 0.0178 8.0026 0.0000 0.1076 0.1774 
## Schickel et al., 2023.2              0.1412 0.0178 7.9430 0.0000 0.1064 0.1761 
## Sharpe et al., 2024.1                0.1421 0.0177 8.0179 0.0000 0.1074 0.1769 
## Sharpe et al., 2024.2                0.1447 0.0176 8.2088 0.0000 0.1102 0.1793 
## Sharpe et al., 2024.3                0.1402 0.0176 7.9825 0.0000 0.1058 0.1747 
## Thornton et al., 2020.1              0.1431 0.0178 8.0419 0.0000 0.1082 0.1780 
## Thornton et al., 2020.2              0.1434 0.0178 8.0692 0.0000 0.1086 0.1783 
## Trotman et al., 2018.1               0.1415 0.0178 7.9642 0.0000 0.1067 0.1763 
## Trotman et al., 2018.2               0.1428 0.0178 8.0335 0.0000 0.1080 0.1777 
## Turner et al., 2021.1                0.1422 0.0178 7.9923 0.0000 0.1073 0.1771 
## Turner et al., 2021.2                0.1409 0.0177 7.9432 0.0000 0.1061 0.1756 
## Turner et al., 2021.3                0.1426 0.0178 8.0165 0.0000 0.1078 0.1775 
## Wood et al., 2018                    0.1410 0.0177 7.9763 0.0000 0.1064 0.1757 
## Scheepers & Keller, 2022             0.1412 0.0178 7.9378 0.0000 0.1064 0.1761 
## Bosshard et al., 2023.1              0.1416 0.0178 7.9448 0.0000 0.1067 0.1766 
## Mansell, 2023.1                      0.1448 0.0177 8.1924 0.0000 0.1101 0.1794 
## Mansell, 2023.2                      0.1452 0.0176 8.2364 0.0000 0.1106 0.1797 
## Jamieson et al., 2021.1              0.1397 0.0176 7.9221 0.0000 0.1051 0.1743 
## Jamieson et al., 2021.2              0.1405 0.0178 7.9087 0.0000 0.1057 0.1754 
## Sharpe et al., 2024.4                0.1442 0.0176 8.1872 0.0000 0.1097 0.1788 
## Sharpe et al., 2024.5                0.1437 0.0177 8.1357 0.0000 0.1091 0.1783 
## Sharpe et al., 2024.6                0.1429 0.0177 8.0740 0.0000 0.1082 0.1775 
## Sharpe et al., 2024.7                0.1432 0.0177 8.0984 0.0000 0.1085 0.1779 
## Sharpe et al., 2024.8                0.1442 0.0176 8.1824 0.0000 0.1097 0.1787 
## Sharpe et al., 2024.9                0.1447 0.0176 8.2286 0.0000 0.1102 0.1791 
## Sharpe et al., 2024.10               0.1432 0.0177 8.0967 0.0000 0.1085 0.1778 
## Sharpe et al., 2024.11               0.1432 0.0177 8.1008 0.0000 0.1086 0.1779 
## Sharpe et al., 2024.12               0.1429 0.0177 8.0946 0.0000 0.1083 0.1775 
## Sharpe et al., 2024.13               0.1432 0.0176 8.1131 0.0000 0.1086 0.1777 
## Sharpe et al., 2024.14               0.1424 0.0177 8.0648 0.0000 0.1078 0.1770 
## Sharpe et al., 2024.15               0.1427 0.0177 8.0807 0.0000 0.1081 0.1773 
## Simms, 2022.1                        0.1423 0.0177 8.0252 0.0000 0.1075 0.1770 
## Simms, 2022.2                        0.1420 0.0177 8.0106 0.0000 0.1073 0.1767 
## Simms, 2022.3                        0.1429 0.0177 8.0640 0.0000 0.1082 0.1776 
## Simms, 2022.4                        0.1431 0.0177 8.0798 0.0000 0.1084 0.1778 
## Simms, 2022.5                        0.1425 0.0177 8.0372 0.0000 0.1077 0.1772 
## Simms, 2022.6                        0.1440 0.0177 8.1550 0.0000 0.1094 0.1786 
## Marr et al., 2021                    0.1415 0.0178 7.9437 0.0000 0.1066 0.1764 
## Conlon et al., 2022.1                0.1403 0.0176 7.9514 0.0000 0.1057 0.1749 
## Conlon et al., 2022.2                0.1411 0.0177 7.9564 0.0000 0.1063 0.1758 
## van Gog et al., 2024.1               0.1434 0.0178 8.0777 0.0000 0.1086 0.1782 
## van Gog et al., 2024.2               0.1435 0.0177 8.0856 0.0000 0.1087 0.1783 
## van Gog et al., 2024.3               0.1440 0.0177 8.1391 0.0000 0.1093 0.1787 
## van Gog et al., 2024.4               0.1435 0.0177 8.0917 0.0000 0.1087 0.1782 
## van Gog et al., 2024.5               0.1430 0.0177 8.0587 0.0000 0.1082 0.1778 
## van Gog et al., 2024.6               0.1422 0.0178 8.0072 0.0000 0.1074 0.1770 
## van Gog et al., 2024.7               0.1432 0.0178 8.0630 0.0000 0.1084 0.1780 
## van Gog et al., 2024.8               0.1444 0.0177 8.1743 0.0000 0.1098 0.1791 
## van Gog et al., 2024.9               0.1453 0.0176 8.2701 0.0000 0.1109 0.1797 
## van Gog et al., 2024.10              0.1418 0.0178 7.9870 0.0000 0.1070 0.1766 
## van Gog et al., 2024.11              0.1432 0.0177 8.0714 0.0000 0.1084 0.1779 
## van Gog et al., 2024.12              0.1430 0.0177 8.0598 0.0000 0.1082 0.1778 
## van Gog et al., 2024.13              0.1439 0.0177 8.1245 0.0000 0.1092 0.1786 
## van Gog et al., 2024.14              0.1434 0.0177 8.0848 0.0000 0.1087 0.1782 
## van Gog et al., 2024.15              0.1448 0.0176 8.2083 0.0000 0.1102 0.1794 
## van Gog et al., 2024.16              0.1425 0.0178 8.0178 0.0000 0.1077 0.1774 
## van Gog et al., 2024.17              0.1438 0.0177 8.1101 0.0000 0.1090 0.1785 
## van Gog et al., 2024.18              0.1456 0.0176 8.2933 0.0000 0.1112 0.1800 
## van Gog et al., 2024.19              0.1436 0.0177 8.0936 0.0000 0.1088 0.1783 
## van Gog et al., 2024.20              0.1422 0.0178 7.9964 0.0000 0.1073 0.1770 
##                                           Q     Qp   tau2      I2     H2 
## Baumgartner & Schneider, 2023      376.0458 0.0000 0.0211 72.4433 3.6289 
## Behnke et al., 2020.1              374.7321 0.0000 0.0209 72.3024 3.6104 
## Behnke et al., 2020.2              377.0359 0.0000 0.0212 72.5477 3.6427 
## Behnke et al., 2022                371.4928 0.0000 0.0212 71.0777 3.4575 
## Behnke et al., 2024.1              360.0503 0.0000 0.0212 69.6185 3.2915 
## Brimmell et al., 2019              375.2546 0.0000 0.0209 72.3371 3.6150 
## Cabral et al., 2024.1              377.0734 0.0000 0.0212 72.5518 3.6432 
## Cabral et al., 2024.2              377.1268 0.0000 0.0212 72.5575 3.6440 
## Cabral et al., 2024.3              377.0228 0.0000 0.0212 72.5464 3.6425 
## Carenzo et al., 2020.1             341.0679 0.0000 0.0181 69.1888 3.2456 
## Carenzo et al., 2020.2             345.7446 0.0000 0.0185 69.6520 3.2951 
## Gurera & Isaacowitz, 2022.1        377.1294 0.0000 0.0212 72.5573 3.6440 
## Gurera & Isaacowitz, 2022.2        375.3689 0.0000 0.0210 72.3669 3.6189 
## Gurera & Isaacowitz, 2022.3        377.1242 0.0000 0.0211 72.5421 3.6419 
## Gurera & Isaacowitz, 2022.4        376.0585 0.0000 0.0210 72.4137 3.6250 
## Hase et al., 2019.1                376.8703 0.0000 0.0211 72.5118 3.6379 
## Hase et al., 2019.2                376.9498 0.0000 0.0211 72.5248 3.6396 
## Hase et al., 2019.3                367.8462 0.0000 0.0200 71.4512 3.5028 
## Hase et al., 2019.4                373.5908 0.0000 0.0207 72.1259 3.5876 
## Hase et al., 2019.5                374.7727 0.0000 0.0209 72.2950 3.6095 
## Hase et al., 2019.6                374.9992 0.0000 0.0209 72.3203 3.6128 
## Hase et al., in preparation.1      369.3800 0.0000 0.0202 71.6311 3.5250 
## Hase et al., in preparation.2      376.5717 0.0000 0.0210 72.4726 3.6327 
## Hase et al., in preparation.3      377.0886 0.0000 0.0211 72.5126 3.6380 
## Hase et al., in preparation.4      376.3613 0.0000 0.0210 72.4456 3.6292 
## Hase et al., in preparation.5      375.4259 0.0000 0.0209 72.3512 3.6168 
## Hase et al., in preparation.6      373.2222 0.0000 0.0206 72.0759 3.5811 
## Hase et al., in preparation.7      376.1049 0.0000 0.0209 72.3963 3.6227 
## Hase et al., in preparation.8      374.5367 0.0000 0.0208 72.2218 3.5999 
## Hase et al., in preparation.9      376.0320 0.0000 0.0209 72.3865 3.6214 
## Hase et al., in preparation.10     376.6744 0.0000 0.0210 72.4731 3.6328 
## Hase et al., in preparation.11     376.2748 0.0000 0.0210 72.4117 3.6247 
## Hase et al., in preparation.12     377.0408 0.0000 0.0210 72.4994 3.6363 
## Hase et al., in preparation.13     377.1226 0.0000 0.0211 72.5105 3.6378 
## Hase et al., in preparation.14     376.8717 0.0000 0.0210 72.4792 3.6336 
## Jamieson et al., 2022.1            356.9870 0.0000 0.0202 71.2499 3.4782 
## Jamieson et al., 2022.2            352.6334 0.0000 0.0195 70.7010 3.4131 
## Jamieson et al., 2022.3            366.8627 0.0000 0.0203 71.6155 3.5230 
## Journault et al., in preparation.1 358.8824 0.0000 0.0202 71.3185 3.4866 
## Journault et al., in preparation.2 376.2039 0.0000 0.0212 72.3036 3.6106 
## Journault et al., in preparation.3 370.1425 0.0000 0.0209 71.9618 3.5666 
## Khalaf et al., 2020.1              373.0985 0.0000 0.0208 72.1490 3.5905 
## Khalaf et al., 2020.2              373.9681 0.0000 0.0209 72.2359 3.6018 
## Laurin & Pellet, 2023              374.9994 0.0000 0.0213 70.9100 3.4376 
## Lee et al., 2019                   371.1765 0.0000 0.0211 71.9166 3.5608 
## Malkoc et al., 2023                373.2067 0.0000 0.0212 72.0585 3.5789 
## Malkoc et al., 2024                376.1061 0.0000 0.0213 72.1678 3.5930 
## Moe & Putwain, 2020.1              374.7188 0.0000 0.0209 72.2878 3.6085 
## Moe & Putwain, 2020.2              376.8328 0.0000 0.0211 72.5218 3.6392 
## Moe & Putwain, 2020.3              376.5738 0.0000 0.0211 72.4935 3.6355 
## Moe & Putwain, 2020.4              376.8905 0.0000 0.0211 72.5280 3.6401 
## Moe & Putwain, 2020.5              376.6981 0.0000 0.0211 72.5071 3.6373 
## Moe & Putwain, 2020.6              375.3578 0.0000 0.0209 72.3590 3.6178 
## Moe & Putwain, 2020.7              376.7189 0.0000 0.0211 72.5094 3.6376 
## Moore et al., 2017                 373.7907 0.0000 0.0209 72.2141 3.5989 
## Mosley et al., 2018.1              374.9393 0.0000 0.0209 72.2858 3.6083 
## Mosley et al., 2018.2              376.4897 0.0000 0.0210 72.4668 3.6320 
## Mulvenna et al., 2023.1            374.6075 0.0000 0.0212 72.2176 3.5994 
## Mulvenna et al., 2023.2            376.0461 0.0000 0.0213 72.2856 3.6082 
## O'Brien et al., 2022               370.7560 0.0000 0.0204 71.8106 3.5474 
## Sammy et al., 2017                 371.9932 0.0000 0.0205 71.9767 3.5685 
## Schickel et al., 2023.1            377.0414 0.0000 0.0212 72.5347 3.6410 
## Schickel et al., 2023.2            375.9794 0.0000 0.0211 72.4315 3.6273 
## Sharpe et al., 2024.1              377.0726 0.0000 0.0211 72.5159 3.6385 
## Sharpe et al., 2024.2              372.9904 0.0000 0.0206 72.0702 3.5804 
## Sharpe et al., 2024.3              371.5501 0.0000 0.0205 71.9701 3.5676 
## Thornton et al., 2020.1            376.4190 0.0000 0.0212 72.4809 3.6338 
## Thornton et al., 2020.2            375.7601 0.0000 0.0211 72.4207 3.6259 
## Trotman et al., 2018.1             376.5610 0.0000 0.0211 72.4971 3.6360 
## Trotman et al., 2018.2             376.8810 0.0000 0.0212 72.5309 3.6405 
## Turner et al., 2021.1              377.1292 0.0000 0.0212 72.5559 3.6438 
## Turner et al., 2021.2              375.0714 0.0000 0.0210 72.3423 3.6156 
## Turner et al., 2021.3              377.0060 0.0000 0.0212 72.5439 3.6422 
## Wood et al., 2018                  375.2492 0.0000 0.0209 72.3338 3.6145 
## Scheepers & Keller, 2022           375.9007 0.0000 0.0211 72.4113 3.6247 
## Bosshard et al., 2023.1            376.6850 0.0000 0.0212 72.4175 3.6255 
## Mansell, 2023.1                    371.6856 0.0000 0.0207 72.0380 3.5763 
## Mansell, 2023.2                    369.9919 0.0000 0.0205 71.8746 3.5555 
## Jamieson et al., 2021.1            357.7120 0.0000 0.0205 71.3553 3.4910 
## Jamieson et al., 2021.2            369.5351 0.0000 0.0210 71.8600 3.5537 
## Sharpe et al., 2024.4              374.1431 0.0000 0.0207 72.1880 3.5956 
## Sharpe et al., 2024.5              375.6769 0.0000 0.0209 72.3371 3.6149 
## Sharpe et al., 2024.6              376.9371 0.0000 0.0210 72.4644 3.6317 
## Sharpe et al., 2024.7              376.5420 0.0000 0.0210 72.4232 3.6262 
## Sharpe et al., 2024.8              374.3001 0.0000 0.0207 72.2032 3.5975 
## Sharpe et al., 2024.9              372.7159 0.0000 0.0206 72.0510 3.5780 
## Sharpe et al., 2024.10             376.5750 0.0000 0.0210 72.4266 3.6267 
## Sharpe et al., 2024.11             376.4942 0.0000 0.0210 72.4184 3.6256 
## Sharpe et al., 2024.12             376.8276 0.0000 0.0209 72.4098 3.6245 
## Sharpe et al., 2024.13             376.3362 0.0000 0.0209 72.3797 3.6205 
## Sharpe et al., 2024.14             377.1225 0.0000 0.0210 72.4348 3.6278 
## Sharpe et al., 2024.15             377.0577 0.0000 0.0209 72.4258 3.6266 
## Simms, 2022.1                      377.1225 0.0000 0.0211 72.5216 3.6392 
## Simms, 2022.2                      377.0001 0.0000 0.0211 72.5114 3.6379 
## Simms, 2022.3                      376.8966 0.0000 0.0210 72.4911 3.6352 
## Simms, 2022.4                      376.6692 0.0000 0.0210 72.4643 3.6317 
## Simms, 2022.5                      377.1191 0.0000 0.0211 72.5192 3.6389 
## Simms, 2022.6                      375.0108 0.0000 0.0208 72.2760 3.6070 
## Marr et al., 2021                  376.4851 0.0000 0.0212 72.4430 3.6288 
## Conlon et al., 2022.1              372.9087 0.0000 0.0207 72.0907 3.5830 
## Conlon et al., 2022.2              375.6734 0.0000 0.0210 72.3976 3.6229 
## van Gog et al., 2024.1             376.1680 0.0000 0.0211 72.4506 3.6298 
## van Gog et al., 2024.2             375.9976 0.0000 0.0210 72.4317 3.6274 
## van Gog et al., 2024.3             374.9298 0.0000 0.0209 72.2978 3.6098 
## van Gog et al., 2024.4             376.0623 0.0000 0.0210 72.4281 3.6269 
## van Gog et al., 2024.5             376.7364 0.0000 0.0211 72.5013 3.6365 
## van Gog et al., 2024.6             377.1206 0.0000 0.0211 72.5484 3.6428 
## van Gog et al., 2024.7             376.5062 0.0000 0.0211 72.4858 3.6345 
## van Gog et al., 2024.8             373.7382 0.0000 0.0208 72.1739 3.5938 
## van Gog et al., 2024.9             371.1049 0.0000 0.0204 71.8460 3.5519 
## van Gog et al., 2024.10            376.9044 0.0000 0.0211 72.5266 3.6399 
## van Gog et al., 2024.11            376.5941 0.0000 0.0211 72.4791 3.6336 
## van Gog et al., 2024.12            376.7752 0.0000 0.0211 72.5005 3.6364 
## van Gog et al., 2024.13            375.2250 0.0000 0.0209 72.3365 3.6149 
## van Gog et al., 2024.14            376.1459 0.0000 0.0210 72.4414 3.6286 
## van Gog et al., 2024.15            372.6448 0.0000 0.0206 72.0532 3.5782 
## van Gog et al., 2024.16            377.0808 0.0000 0.0212 72.5511 3.6431 
## van Gog et al., 2024.17            375.4537 0.0000 0.0210 72.3696 3.6192 
## van Gog et al., 2024.18            369.8239 0.0000 0.0203 71.7300 3.5373 
## van Gog et al., 2024.19            375.8325 0.0000 0.0210 72.4127 3.6249 
## van Gog et al., 2024.20            377.1173 0.0000 0.0212 72.5559 3.6438
# Egger# 
model_fun_Cogni_OutEgger <- rma.mv(yi = Cogni_cor_Z, V = Cogni_cor_Z_var, random = ~ 1 | paper_id/effect_size_id, mod = ~sqrt(Cogni_cor_Z_var), tdist=TRUE, data = Data)
## Warning: 41 rows with NAs omitted from model fitting.
model_fun_Cogni_OutEgger
## 
## Multivariate Meta-Analysis Model (k = 121; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0105  0.1024     39     no                 paper_id 
## sigma^2.2  0.0098  0.0989    121     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 119) = 373.2432, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 119) = 1.5876, p-val = 0.2101
## 
## Model Results:
## 
##                        estimate      se     tval   df    pval    ci.lb   ci.ub 
## intrcpt                  0.2211  0.0505   4.3756  119  <.0001   0.1210  0.3211 
## sqrt(Cogni_cor_Z_var)   -0.5302  0.4208  -1.2600  119  0.2101  -1.3635  0.3030 
##                            
## intrcpt                *** 
## sqrt(Cogni_cor_Z_var)      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Run trim-and-fill analysis for the right side
model_fun_Cogni_tf_right <- trimfill(model_fun_Cogni, side = "right")

# Run trim-and-fill analysis for the left side
model_fun_Cogni_tf_left <- trimfill(model_fun_Cogni, side = "left")

# Print the trim-and-fill model results
print(model_fun_Cogni_tf_right)
## 
## Estimated number of missing studies on the right side: 28 (SE = 7.1995)
## 
## Random-Effects Model (k = 149; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0350 (SE = 0.0061)
## tau (square root of estimated tau^2 value):      0.1871
## I^2 (total heterogeneity / total variability):   79.41%
## H^2 (total variability / sampling variability):  4.86
## 
## Test for Heterogeneity:
## Q(df = 148) = 584.4407, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval   ci.lb   ci.ub      
##   0.2056  0.0191  10.7476  <.0001  0.1681  0.2430  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(model_fun_Cogni_tf_left)
## 
## Estimated number of missing studies on the left side: 0 (SE = 5.7525)
## 
## Random-Effects Model (k = 121; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0209 (SE = 0.0046)
## tau (square root of estimated tau^2 value):      0.1445
## I^2 (total heterogeneity / total variability):   72.22%
## H^2 (total variability / sampling variability):  3.60
## 
## Test for Heterogeneity:
## Q(df = 120) = 377.1303, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.1426  0.0176  8.0869  <.0001  0.1080  0.1771  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Combine the number of studies imputed from both sides
total_imputed_studies <- model_fun_Cogni_tf_right$k0 + model_fun_Cogni_tf_left$k0
cat("Total number of imputed studies (both sides) for Cogni:", total_imputed_studies, "\n")
## Total number of imputed studies (both sides) for Cogni: 28
# Generate funnel plots only left
#par(mfrow=c(1, 3))
funnel(model_fun_Cogni, main="Original Model")

funnel(model_fun_Cogni_tf_right, main="Trim-and-Fill Right")

funnel(model_fun_Cogni_tf_left, main="Trim-and-Fill Left", xlab = 'Cogni')

# Return to single plot layout
#par(mfrow=c(1, 1))

8.2 Multilevel Model

model_Cogni_multilevel <- rma.mv(yi = Cogni_cor_Z, V = Cogni_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML")
## Warning: 41 rows with NAs omitted from model fitting.
model_Cogni_multilevel
## 
## Multivariate Meta-Analysis Model (k = 121; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0122  0.1106     39     no                 paper_id 
## sigma^2.2  0.0093  0.0963    121     no  paper_id/effect_size_id 
## 
## Test for Heterogeneity:
## Q(df = 120) = 377.1303, p-val < .0001
## 
## Model Results:
## 
## estimate      se    tval   df    pval   ci.lb   ci.ub      
##   0.1650  0.0239  6.9040  120  <.0001  0.1177  0.2123  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
convert_z2r(0.1660)
## [1] 0.1644919
predict_Cogni <- predict(model_Cogni_multilevel, digits=3, transf=transf.ztor, level = 95)
predict_Cogni
## 
##   pred ci.lb ci.ub  pi.lb pi.ub 
##  0.163 0.117 0.209 -0.128 0.429
forest.rma(model_Cogni_multilevel, header = "Cogni",slab = Data$Ref_APA, alim=c(-0.8,1.2))

######## list 1 ########
list_Cogni <- Data$Cogni_cor_Z_var

############ sum 1#####################
sum_Cogni <- sum(list_Cogni, na.rm = TRUE)

###################### sum 2 #####################
sum2_Cogni <- (sum_Cogni)^2

####################### list 2 ##############
list_In_Cogni <- Data$Cogni_cor_Z_var_Sq

#################### sum 3 #######################
sum_In_Cogni<- sum(list_In_Cogni, na.rm = TRUE)

################ numerator ##############
numerator_Cogni<- (model_Cogni_multilevel$k-1)*sum_Cogni

############# denominator #############
denominator_Cogni<- sum2_Cogni - sum_In_Cogni

############## eps ################
EPS_Cogni<- numerator_Cogni / denominator_Cogni

############### i2 1 level ##################
I2_1_Cogni <- (EPS_Cogni) / (model_Cogni_multilevel$sigma2[1] + model_Cogni_multilevel$sigma2[2] + EPS_Cogni) *100
I2_1_Cogni
## [1] 99.94956
############## i2 2 level #################
I2_2_Cogni <- (model_Cogni_multilevel$sigma2[1]) / (model_Cogni_multilevel$sigma2[1] + model_Cogni_multilevel$sigma2[2] + EPS_Cogni) *100
I2_2_Cogni
## [1] 0.02869619
########### I2 level 3
I2_3_Cogni <- (model_Cogni_multilevel$sigma2[2]) / (model_Cogni_multilevel$sigma2[1] + model_Cogni_multilevel$sigma2[2] + EPS_Cogni) *100
I2_3_Cogni
## [1] 0.02174071
############### ML without level 2 ##########
model_Cogni_multilevel_2 <- rma.mv(yi = Cogni_cor_Z, V = Cogni_cor_Z_var, slab = Ref_APA, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", sigma2=c(0,NA), tdist=TRUE,data = Data)
## Warning: 41 rows with NAs omitted from model fitting.
############# ml without level 3 ###########
model_Cogni_multilevel_3 <- rma.mv(yi = Cogni_cor_Z, V = Cogni_cor_Z_var, slab = Ref_APA, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", sigma2=c(NA,0), tdist=TRUE,data = Data)
## Warning: 41 rows with NAs omitted from model fitting.
##################### sig level 2 #######################
anova12_Cogni <- anova(model_Cogni_multilevel,model_Cogni_multilevel_2)
anova12_Cogni
## 
##         df      AIC      BIC     AICc  logLik     LRT   pval       QE 
## Full     3 -64.3029 -55.9404 -64.0960 35.1515                377.1303 
## Reduced  2 -47.4700 -41.8950 -47.3674 25.7350 18.8330 <.0001 377.1303
###############sig level 3v #################
anova13_Cogni <- anova(model_Cogni_multilevel,model_Cogni_multilevel_3)
anova13_Cogni
## 
##         df      AIC      BIC     AICc  logLik     LRT   pval       QE 
## Full     3 -64.3029 -55.9404 -64.0960 35.1515                377.1303 
## Reduced  2 -42.8638 -37.2888 -42.7612 23.4319 23.4391 <.0001 377.1303

9. Results table

# Function to perform the calculations and create the result table for a given parameter
create_result_table <- function(parameter_name, cor_col, n_col) {
  # Z-transform correlation coefficients
  z_col <- .5 * log((1 + Data[[cor_col]]) / (1 - Data[[cor_col]]))
  var_col <- 1 / (Data[[n_col]] - 3)
  
  # Add z and variance columns to Data
  Data[[paste0(parameter_name, "_cor_Z")]] <- z_col
  Data[[paste0(parameter_name, "_cor_Z_var")]] <- var_col
  Data[[paste0(parameter_name, "_cor_Z_var_Sq")]] <- var_col^2
  
  # Meta-analysis model
  model <- rma.mv(yi = z_col, V = var_col, slab = Data$Ref_APA, 
                  data = Data, random = ~ 1 | paper_id/effect_size_id, 
                  test = "t", method = "REML")
  
  # Prediction intervals
  predict_result <- predict(model, transf=transf.ztor, level = 95)
  
  # Additional I2 calculations
  EPS <- (model$k - 1) * sum(var_col, na.rm = TRUE) /
         ((sum(var_col, na.rm = TRUE))^2 - sum(var_col^2, na.rm = TRUE))
  
  I2_1 <- round((EPS) / (model$sigma2[1] + model$sigma2[2] + EPS) * 100, 2)
  I2_2 <- round((model$sigma2[1]) / (model$sigma2[1] + model$sigma2[2] + EPS) * 100, 2)
  I2_3 <- round((model$sigma2[2]) / (model$sigma2[1] + model$sigma2[2] + EPS) * 100, 2)
  
  # Egger's test
  egger_test <- rma.mv(yi = z_col, V = var_col, random = ~ 1 | paper_id/effect_size_id, 
                       mod = ~ sqrt(var_col), tdist = TRUE, data = Data)
  egger_result <- round(egger_test$QM, 2)
  
  # Rank correlation test
  rank_corr_test <- ranktest(model)
  rank_corr_result <- round(as.numeric(rank_corr_test$tau), 2)
  
  # Creating the table
  result_table <- data.frame(
    Parameter_Name = parameter_name,
    Number_of_Effect_Sizes = model$k,
    Mean_Effect_Size = round(model$b[1], 2),
    CI_95 = paste0(round(model$ci.lb, 2), ", ", round(model$ci.ub, 2)),
    PI_95 = paste0(round(predict_result$pi.lb, 2), ", ", round(predict_result$pi.ub, 2)),
    Q_Parameter = round(model$QE,2),
    I2_Level1 = I2_1,
    I2_Level2 = I2_2,
    I2_Level3 = I2_3,
    Egger_Test_Result = egger_result,
    Rank_Corr_Test_Result = rank_corr_result
  )
  
  return(result_table)
}

# List of parameters and corresponding column names
parameters <- list(
  list(name = "CO", cor_col = "CO_cor", n_col = "n_performance"),
  list(name = "TPR", cor_col = "TPR_cor", n_col = "n_performance"),
  list(name = "CTI", cor_col = "CTI_cor", n_col = "n_performance"),
  list(name = "Cogni", cor_col = "Cogni_cor", n_col = "n_performance")
)

# Apply the function to each parameter and combine the results
result_tables <- lapply(parameters, function(param) {
  create_result_table(param$name, param$cor_col, param$n_col)
})
## Warning: 94 rows with NAs omitted from model fitting.
## Warning: 94 rows with NAs omitted from model fitting.
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## nie można obliczyć dokładnej wartości prawdopodobieństwa z powtórzonymi
## wartościami
## Warning: 101 rows with NAs omitted from model fitting.
## Warning: 101 rows with NAs omitted from model fitting.
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## nie można obliczyć dokładnej wartości prawdopodobieństwa z powtórzonymi
## wartościami
## Warning: 89 rows with NAs omitted from model fitting.
## Warning: 89 rows with NAs omitted from model fitting.
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## nie można obliczyć dokładnej wartości prawdopodobieństwa z powtórzonymi
## wartościami
## Warning: 41 rows with NAs omitted from model fitting.
## Warning: 41 rows with NAs omitted from model fitting.
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## nie można obliczyć dokładnej wartości prawdopodobieństwa z powtórzonymi
## wartościami
# Combine all result tables into one data frame
final_result_table <- do.call(rbind, result_tables)

# Print the final result table
print(final_result_table)
##   Parameter_Name Number_of_Effect_Sizes Mean_Effect_Size        CI_95
## 1             CO                     68             0.06      0, 0.13
## 2            TPR                     61            -0.10 -0.17, -0.03
## 3            CTI                     73             0.10   0.04, 0.15
## 4          Cogni                    121             0.16   0.12, 0.21
##         PI_95 Q_Parameter I2_Level1 I2_Level2 I2_Level3 Egger_Test_Result
## 1 -0.25, 0.36      151.69     99.85      0.08      0.07              0.03
## 2 -0.35, 0.17      117.86     99.88      0.12      0.00              1.39
## 3 -0.24, 0.42      195.52     99.84      0.00      0.16              0.29
## 4 -0.13, 0.43      377.13     99.93      0.04      0.03              1.59
##   Rank_Corr_Test_Result
## 1                 -0.05
## 2                 -0.01
## 3                  0.04
## 4                 -0.16
write.csv(final_result_table, "meta_analysis_results.csv", row.names = FALSE)

10. Figures

10.1 Funnel plots

# Run trim-and-fill analysis for the right side
model_fun_CO_tf_right <- trimfill(model_fun_CO, side = "right")
model_fun_TPR_tf_left <- trimfill(model_fun_TPR, side = "left")
model_fun_CTI_tf_right <- trimfill(model_fun_CTI, side = "right")
#model_fun_Cogni_tf_right <- trimfill(model_fun_Cogni, side = "left" )

# Set up 2x2 plotting area
par(mfrow=c(2, 2))

# Generate funnel plots
funnel(model_fun_CO_tf_right, main="", xlab = 'Cardiac Output')
funnel(model_fun_TPR_tf_left, main="", xlab = 'Total Peripheral Resistance')
funnel(model_fun_CTI_tf_right, main="", xlab = 'Challenge Threat Index')
funnel(model_fun_Cogni_tf_right, main="", xlab = 'Cognitive Evaluations')

# Set up the file for output
jpeg("funnel_plots.jpg", width = 16, height = 16, units = "cm", res = 300)

# Set up 2x2 plotting area
par(mfrow=c(2, 2))

# Generate funnel plots
funnel(model_fun_CO_tf_right, main="", xlab = 'Cardiac Output')
funnel(model_fun_TPR_tf_left, main="", xlab = 'Total Peripheral Resistance')
funnel(model_fun_CTI_tf_right, main="", xlab = 'Challenge Threat Index')
funnel(model_fun_Cogni_tf_right, main="", xlab = 'Cognitive Evaluations')

# Close the file
dev.off()
## png 
##   2
# Return to single plot layout
par(mfrow=c(1, 1))

10.2 Forest plots

# Save CO forest plot
jpeg("forest_plot_CO.jpg", width = 8, height = 26, units = "cm", res = 300)
forest(model_CO_multilevel, header = "Reference", xlab = 'CO', slab = Data$Ref_APA, alim = c(-0.8, 1), cex = 0.42, shade="zebra")
dev.off()
## png 
##   2
# Save TPR forest plot
jpeg("forest_plot_TPR.jpg", width = 8, height = 26, units = "cm", res = 300)
forest(model_TPR_multilevel, header = "Reference", xlab = 'TPR', slab = Data$Ref_APA, alim = c(-1, .6), cex = 0.42, shade="zebra")
dev.off()
## png 
##   2
# Save CTI forest plot
jpeg("forest_plot_CTI.jpg", width = 8, height = 26, units = "cm", res = 300)
forest(model_CTI_multilevel, header = "Reference", xlab = 'CTI', slab = Data$Ref_APA, alim = c(-1.5, 1.5), cex = 0.42, shade="zebra")
dev.off()
## png 
##   2
# Save Cogni forest plot
jpeg("forest_plot_Cogni.jpg", width = 8, height = 26, units = "cm", res = 300)
forest(model_Cogni_multilevel, header = "Reference", xlab = 'Cognitive Evaluations', slab = Data$Ref_APA, alim = c(-0.8, 1), cex = 0.42, shade="zebra")
dev.off()
## png 
##   2
# Display forest plots 
knitr::include_graphics("forest_plot_CO.jpg")

knitr::include_graphics("forest_plot_TPR.jpg")

knitr::include_graphics("forest_plot_CTI.jpg")

knitr::include_graphics("forest_plot_Cogni.jpg")

11 Moderator Analysis

11.1 Moderator Analysis - main code

model_CO_multilevel_BD <- rma.mv(yi = CO_cor_Z, V = CO_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ factor(Cardio_before0_during1)-1, tdist=TRUE)
## Warning: 94 rows with NAs omitted from model fitting.
model_CO_multilevel_Age <- rma.mv(yi = CO_cor_Z, V = CO_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ age, tdist=TRUE)
## Warning: 94 rows with NAs omitted from model fitting.
model_CO_multilevel_Sex <- rma.mv(yi = CO_cor_Z, V = CO_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ sex_percent_F, tdist=TRUE)
## Warning: 94 rows with NAs omitted from model fitting.
model_CO_multilevel_Rob <- rma.mv(yi = CO_cor_Z, V = CO_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ factor(overall_RoB)-1, tdist=TRUE)
## Warning: 95 rows with NAs omitted from model fitting.
## Warning: Redundant predictors dropped from the model.
model_CO_multilevel_BD
## 
## Multivariate Meta-Analysis Model (k = 68; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0127  0.1127     28     no                 paper_id 
## sigma^2.2  0.0121  0.1099     68     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 66) = 143.8691, p-val < .0001
## 
## Test of Moderators (coefficients 1:2):
## F(df1 = 2, df2 = 66) = 2.0653, p-val = 0.1349
## 
## Model Results:
## 
##                                  estimate      se    tval  df    pval    ci.lb 
## factor(Cardio_before0_during1)0    0.0439  0.0385  1.1396  66  0.2586  -0.0330 
## factor(Cardio_before0_during1)1    0.0925  0.0520  1.7786  66  0.0799  -0.0113 
##                                   ci.ub    
## factor(Cardio_before0_during1)0  0.1209    
## factor(Cardio_before0_during1)1  0.1963  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_CO_multilevel_Age
## 
## Multivariate Meta-Analysis Model (k = 68; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0149  0.1219     28     no                 paper_id 
## sigma^2.2  0.0105  0.1022     68     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 66) = 150.6689, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 66) = 1.1833, p-val = 0.2806
## 
## Model Results:
## 
##          estimate      se     tval  df    pval    ci.lb   ci.ub    
## intrcpt    0.1632  0.0987   1.6524  66  0.1032  -0.0340  0.3603    
## age       -0.0043  0.0040  -1.0878  66  0.2806  -0.0123  0.0036    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_CO_multilevel_Sex
## 
## Multivariate Meta-Analysis Model (k = 68; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0147  0.1213     28     no                 paper_id 
## sigma^2.2  0.0115  0.1074     68     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 66) = 148.0255, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 66) = 0.0336, p-val = 0.8552
## 
## Model Results:
## 
##                estimate      se    tval  df    pval    ci.lb   ci.ub    
## intrcpt          0.0536  0.0552  0.9702  66  0.3355  -0.0567  0.1638    
## sex_percent_F    0.0230  0.1257  0.1833  66  0.8552  -0.2280  0.2740    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_CO_multilevel_Rob
## 
## Multivariate Meta-Analysis Model (k = 67; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0163  0.1277     27     no                 paper_id 
## sigma^2.2  0.0118  0.1087     67     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 65) = 150.0373, p-val < .0001
## 
## Test of Moderators (coefficients 1:2):
## F(df1 = 2, df2 = 65) = 1.5413, p-val = 0.2218
## 
## Model Results:
## 
##                       estimate      se    tval  df    pval    ci.lb   ci.ub    
## factor(overall_RoB)1    0.0645  0.0395  1.6334  65  0.1072  -0.0144  0.1433    
## factor(overall_RoB)2    0.0485  0.0753  0.6439  65  0.5219  -0.1019  0.1988    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_TPR_multilevel_BD <- rma.mv(yi = TPR_cor_Z, V = TPR_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ factor(Cardio_before0_during1)-1, tdist=TRUE)
## Warning: 101 rows with NAs omitted from model fitting.
model_TPR_multilevel_Age <- rma.mv(yi = TPR_cor_Z, V = TPR_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ age, tdist=TRUE)
## Warning: 101 rows with NAs omitted from model fitting.
model_TPR_multilevel_Sex <- rma.mv(yi = TPR_cor_Z, V = TPR_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ sex_percent_F, tdist=TRUE)
## Warning: 101 rows with NAs omitted from model fitting.
model_TPR_multilevel_Rob <- rma.mv(yi = TPR_cor_Z, V = TPR_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ factor(overall_RoB)-1, tdist=TRUE)
## Warning: 102 rows with NAs omitted from model fitting.
## Warning: Redundant predictors dropped from the model.
model_TPR_multilevel_BD
## 
## Multivariate Meta-Analysis Model (k = 61; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0187  0.1369     24     no                 paper_id 
## sigma^2.2  0.0000  0.0000     61     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 59) = 112.3671, p-val < .0001
## 
## Test of Moderators (coefficients 1:2):
## F(df1 = 2, df2 = 59) = 3.9994, p-val = 0.0235
## 
## Model Results:
## 
##                                  estimate      se     tval  df    pval    ci.lb 
## factor(Cardio_before0_during1)0   -0.0996  0.0397  -2.5082  59  0.0149  -0.1790 
## factor(Cardio_before0_during1)1   -0.0971  0.0642  -1.5136  59  0.1355  -0.2255 
##                                    ci.ub    
## factor(Cardio_before0_during1)0  -0.0201  * 
## factor(Cardio_before0_during1)1   0.0313    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_TPR_multilevel_Age
## 
## Multivariate Meta-Analysis Model (k = 61; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0188  0.1372     24     no                 paper_id 
## sigma^2.2  0.0000  0.0000     61     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 59) = 116.3318, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 59) = 0.0791, p-val = 0.7796
## 
## Model Results:
## 
##          estimate      se     tval  df    pval    ci.lb   ci.ub    
## intrcpt   -0.0108  0.3157  -0.0342  59  0.9728  -0.6424  0.6208    
## age       -0.0039  0.0137  -0.2812  59  0.7796  -0.0313  0.0236    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_TPR_multilevel_Sex
## 
## Multivariate Meta-Analysis Model (k = 61; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0190  0.1378     24     no                 paper_id 
## sigma^2.2  0.0000  0.0000     61     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 59) = 104.7456, p-val = 0.0002
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 59) = 0.0089, p-val = 0.9253
## 
## Model Results:
## 
##                estimate      se     tval  df    pval    ci.lb   ci.ub    
## intrcpt         -0.0944  0.0612  -1.5421  59  0.1284  -0.2169  0.0281    
## sex_percent_F   -0.0125  0.1326  -0.0942  59  0.9253  -0.2777  0.2528    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_TPR_multilevel_Rob
## 
## Multivariate Meta-Analysis Model (k = 60; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0098  0.0989     23     no                 paper_id 
## sigma^2.2  0.0000  0.0000     60     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 58) = 88.9257, p-val = 0.0056
## 
## Test of Moderators (coefficients 1:2):
## F(df1 = 2, df2 = 58) = 9.2274, p-val = 0.0003
## 
## Model Results:
## 
##                       estimate      se     tval  df    pval    ci.lb    ci.ub 
## factor(overall_RoB)1   -0.0511  0.0329  -1.5528  58  0.1259  -0.1169   0.0148 
## factor(overall_RoB)2   -0.2504  0.0625  -4.0054  58  0.0002  -0.3755  -0.1253 
##                           
## factor(overall_RoB)1      
## factor(overall_RoB)2  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_CTI_multilevel_BD <- rma.mv(yi = CTI_cor_Z, V = CTI_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ factor(Cardio_before0_during1)-1, tdist=TRUE)
## Warning: 89 rows with NAs omitted from model fitting.
model_CTI_multilevel_Age <- rma.mv(yi = CTI_cor_Z, V = CTI_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ age, tdist=TRUE)
## Warning: 89 rows with NAs omitted from model fitting.
model_CTI_multilevel_Sex <- rma.mv(yi = CTI_cor_Z, V = CTI_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ sex_percent_F, tdist=TRUE)
## Warning: 89 rows with NAs omitted from model fitting.
model_CTI_multilevel_Rob <- rma.mv(yi = CTI_cor_Z, V = CTI_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ factor(overall_RoB)-1, tdist=TRUE)
## Warning: 90 rows with NAs omitted from model fitting.
## Warning: Redundant predictors dropped from the model.
model_CTI_multilevel_BD
## 
## Multivariate Meta-Analysis Model (k = 73; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0000  0.0000     28     no                 paper_id 
## sigma^2.2  0.0290  0.1702     73     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 71) = 181.6539, p-val < .0001
## 
## Test of Moderators (coefficients 1:2):
## F(df1 = 2, df2 = 71) = 6.9192, p-val = 0.0018
## 
## Model Results:
## 
##                                  estimate      se    tval  df    pval   ci.lb 
## factor(Cardio_before0_during1)0    0.0828  0.0300  2.7652  71  0.0072  0.0231 
## factor(Cardio_before0_during1)1    0.1607  0.0646  2.4883  71  0.0152  0.0319 
##                                   ci.ub     
## factor(Cardio_before0_during1)0  0.1426  ** 
## factor(Cardio_before0_during1)1  0.2895   * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_CTI_multilevel_Age
## 
## Multivariate Meta-Analysis Model (k = 73; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0018  0.0429     28     no                 paper_id 
## sigma^2.2  0.0286  0.1690     73     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 71) = 195.3210, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 71) = 0.0196, p-val = 0.8891
## 
## Model Results:
## 
##          estimate      se    tval  df    pval    ci.lb   ci.ub    
## intrcpt    0.0417  0.4099  0.1016  71  0.9193  -0.7757  0.8590    
## age        0.0026  0.0184  0.1399  71  0.8891  -0.0341  0.0392    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_CTI_multilevel_Sex
## 
## Multivariate Meta-Analysis Model (k = 73; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0008  0.0284     28     no                 paper_id 
## sigma^2.2  0.0289  0.1700     73     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 71) = 174.5910, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 71) = 0.3318, p-val = 0.5664
## 
## Model Results:
## 
##                estimate      se    tval  df    pval    ci.lb   ci.ub    
## intrcpt          0.0737  0.0502  1.4665  71  0.1469  -0.0265  0.1738    
## sex_percent_F    0.0653  0.1134  0.5760  71  0.5664  -0.1609  0.2916    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_CTI_multilevel_Rob
## 
## Multivariate Meta-Analysis Model (k = 72; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0037  0.0606     27     no                 paper_id 
## sigma^2.2  0.0284  0.1684     72     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 70) = 188.8290, p-val < .0001
## 
## Test of Moderators (coefficients 1:2):
## F(df1 = 2, df2 = 70) = 5.3111, p-val = 0.0071
## 
## Model Results:
## 
##                       estimate      se    tval  df    pval    ci.lb   ci.ub     
## factor(overall_RoB)1    0.1013  0.0338  2.9988  70  0.0038   0.0339  0.1687  ** 
## factor(overall_RoB)2    0.0983  0.0770  1.2764  70  0.2060  -0.0553  0.2518     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_Cogni_multilevel_Year <- rma.mv(yi = Cogni_cor_Z, V = Cogni_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ year, tdist=TRUE)
## Warning: 41 rows with NAs omitted from model fitting.
model_Cogni_multilevel_Age <- rma.mv(yi = Cogni_cor_Z, V = Cogni_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ age, tdist=TRUE)
## Warning: 43 rows with NAs omitted from model fitting.
model_Cogni_multilevel_Sex <- rma.mv(yi = Cogni_cor_Z, V = Cogni_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ sex_percent_F, tdist=TRUE)
## Warning: 42 rows with NAs omitted from model fitting.
model_Cogni_multilevel_Rob <- rma.mv(yi = Cogni_cor_Z, V = Cogni_cor_Z_var, slab = Ref_APA, data = Data, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ factor(overall_RoB)-1, tdist=TRUE)
## Warning: 42 rows with NAs omitted from model fitting.
model_Cogni_multilevel_Year
## 
## Multivariate Meta-Analysis Model (k = 121; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0114  0.1066     39     no                 paper_id 
## sigma^2.2  0.0095  0.0974    121     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 119) = 354.1891, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 119) = 1.5059, p-val = 0.2222
## 
## Model Results:
## 
##          estimate       se     tval   df    pval     ci.lb    ci.ub    
## intrcpt   16.7599  13.5233   1.2393  119  0.2177  -10.0176  43.5374    
## year      -0.0082   0.0067  -1.2272  119  0.2222   -0.0215   0.0050    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_Cogni_multilevel_Age
## 
## Multivariate Meta-Analysis Model (k = 119; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0120  0.1094     38     no                 paper_id 
## sigma^2.2  0.0096  0.0981    119     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 117) = 347.1890, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 117) = 0.5320, p-val = 0.4672
## 
## Model Results:
## 
##          estimate      se     tval   df    pval    ci.lb   ci.ub     
## intrcpt    0.2017  0.0627   3.2169  117  0.0017   0.0775  0.3259  ** 
## age       -0.0018  0.0025  -0.7294  117  0.4672  -0.0067  0.0031     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_Cogni_multilevel_Sex
## 
## Multivariate Meta-Analysis Model (k = 120; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0130  0.1140     38     no                 paper_id 
## sigma^2.2  0.0095  0.0976    120     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 118) = 371.1344, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 118) = 0.0013, p-val = 0.9714
## 
## Model Results:
## 
##                estimate      se    tval   df    pval    ci.lb   ci.ub      
## intrcpt          0.1653  0.0373  4.4363  118  <.0001   0.0915  0.2390  *** 
## sex_percent_F    0.0021  0.0593  0.0359  118  0.9714  -0.1154  0.1196      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_Cogni_multilevel_Rob
## 
## Multivariate Meta-Analysis Model (k = 120; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0137  0.1169     38     no                 paper_id 
## sigma^2.2  0.0093  0.0966    120     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 117) = 372.4900, p-val < .0001
## 
## Test of Moderators (coefficients 1:3):
## F(df1 = 3, df2 = 117) = 14.6794, p-val < .0001
## 
## Model Results:
## 
##                       estimate      se    tval   df    pval    ci.lb   ci.ub 
## factor(overall_RoB)1    0.1805  0.0321  5.6301  117  <.0001   0.1170  0.2440 
## factor(overall_RoB)2    0.1366  0.0404  3.3765  117  0.0010   0.0565  0.2166 
## factor(overall_RoB)3    0.1931  0.1500  1.2869  117  0.2007  -0.1041  0.4902 
##                           
## factor(overall_RoB)1  *** 
## factor(overall_RoB)2  *** 
## factor(overall_RoB)3      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

11.2 Moderator Analysis - Year + Data from Behnke & Kaczmarek, 2019

#import and store data from excel file
Data2 <- read_excel("C:/Users/macbe/OneDrive/Behnke Dropbox/MA CHT/Data.xlsx", sheet = "year_pub_bias")
## New names:
## • `title` -> `title...5`
## • `title` -> `title...8`
## • `` -> `...22`
## • `` -> `...31`
#View(Data2) 

Data2 <- as.data.frame(Data2)

#z-transform correlation coefficients
Data2$CO_cor_Z <- .5 * log((1+Data2$CO_cor)/(1-Data2$CO_cor))
Data2$TPR_cor_Z <- .5 * log((1+Data2$TPR_cor)/(1-Data2$TPR_cor))
Data2$CTI_cor_Z <- .5 * log((1+Data2$CTI_cor)/(1-Data2$CTI_cor))


# calculate z variance
Data2$CO_cor_Z_var <- ifelse(is.na(Data2$CO_cor), NA, 1 / (Data2$n_performance - 3))
Data2$TPR_cor_Z_var <- ifelse(is.na(Data2$TPR_cor), NA, 1 / (Data2$n_performance - 3))
Data2$CTI_cor_Z_var <- ifelse(is.na(Data2$CTI_cor), NA, 1 / (Data2$n_performance - 3))


# calculate z variance squared
Data2$CO_cor_Z_var_Sq <- ifelse(is.na(Data2$CO_cor), NA, (1 / (Data2$n_performance - 3))^2)
Data2$TPR_cor_Z_var_Sq <- ifelse(is.na(Data2$TPR_cor), NA, (1 / (Data2$n_performance - 3))^2)
Data2$CTI_cor_Z_var_Sq <- ifelse(is.na(Data2$CTI_cor), NA, (1 / (Data2$n_performance - 3))^2)


model_CO_multilevel_Year <- rma.mv(yi = CO_cor_Z, V = CO_cor_Z_var, slab = Ref_APA, data = Data2, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ year, tdist=TRUE) #did not converge
## Warning: 95 rows with NAs omitted from model fitting.
model_TPR_multilevel_Year <- rma.mv(yi = TPR_cor_Z, V = TPR_cor_Z_var, slab = Ref_APA, data = Data2, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ year, tdist=TRUE)
## Warning: 102 rows with NAs omitted from model fitting.
#model_CTI_multilevel_Year <- rma.mv(yi = CTI_cor_Z, V = CTI_cor_Z_var, slab = Ref_APA, data = Data2, random = ~ 1 | paper_id/effect_size_id, test = "t", method = "REML", mods = ~ year, tdist=TRUE)


model_CO_multilevel_Year #did not converge
## 
## Multivariate Meta-Analysis Model (k = 86; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0156  0.1250     46     no                 paper_id 
## sigma^2.2  0.0109  0.1042     86     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 84) = 193.2813, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 84) = 3.9173, p-val = 0.0511
## 
## Model Results:
## 
##          estimate       se     tval  df    pval    ci.lb    ci.ub    
## intrcpt   23.4955  11.8215   1.9875  84  0.0501  -0.0129  47.0039  . 
## year      -0.0116   0.0059  -1.9792  84  0.0511  -0.0232   0.0001  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_TPR_multilevel_Year
## 
## Multivariate Meta-Analysis Model (k = 79; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed                   factor 
## sigma^2.1  0.0174  0.1320     42     no                 paper_id 
## sigma^2.2  0.0000  0.0000     79     no  paper_id/effect_size_id 
## 
## Test for Residual Heterogeneity:
## QE(df = 77) = 144.2935, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 77) = 1.5997, p-val = 0.2098
## 
## Model Results:
## 
##          estimate       se     tval  df    pval     ci.lb   ci.ub    
## intrcpt  -14.2351  11.1563  -1.2760  77  0.2058  -36.4502  7.9800    
## year       0.0070   0.0055   1.2648  77  0.2098   -0.0040  0.0180    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#model_CTI_multilevel_Year #did not converge

11.3 Table for moderator analysis

# Function to extract the necessary information from the moderator models
extract_mod_results <- function(model) {
  mod_F <- round(model$QM, 2)
  mod_df <- paste(model$QMdf[1], model$QMdf[2], sep = ", ")
  return(list(F = mod_F, df = mod_df))
}

# Creating the summary table
create_summary_table <- function() {
  data <- data.frame(
    Name = c("CO", "TPR", "CTI", "Cogni"),
    ModeratorAge_F = c(
      extract_mod_results(model_CO_multilevel_Age)$F,
      extract_mod_results(model_TPR_multilevel_Age)$F,
      extract_mod_results(model_CTI_multilevel_Age)$F,
      extract_mod_results(model_Cogni_multilevel_Age)$F
    ),
    ModeratorAge_df = c(
      extract_mod_results(model_CO_multilevel_Age)$df,
      extract_mod_results(model_TPR_multilevel_Age)$df,
      extract_mod_results(model_CTI_multilevel_Age)$df,
      extract_mod_results(model_Cogni_multilevel_Age)$df
    ),
    ModeratorSex_F = c(
      extract_mod_results(model_CO_multilevel_Sex)$F,
      extract_mod_results(model_TPR_multilevel_Sex)$F,
      extract_mod_results(model_CTI_multilevel_Sex)$F,
      extract_mod_results(model_Cogni_multilevel_Sex)$F
    ),
    ModeratorSex_df = c(
      extract_mod_results(model_CO_multilevel_Sex)$df,
      extract_mod_results(model_TPR_multilevel_Sex)$df,
      extract_mod_results(model_CTI_multilevel_Sex)$df,
      extract_mod_results(model_Cogni_multilevel_Sex)$df
    ),
    ModeratorBD_F = c(
      extract_mod_results(model_CO_multilevel_BD)$F,
      extract_mod_results(model_TPR_multilevel_BD)$F,
      extract_mod_results(model_CTI_multilevel_BD)$F,
      NA
    ),
    ModeratorBD_df = c(
      extract_mod_results(model_CO_multilevel_BD)$df,
      extract_mod_results(model_TPR_multilevel_BD)$df,
      extract_mod_results(model_CTI_multilevel_BD)$df,
      NA
    ),
    ModeratorYear_F = c(
      extract_mod_results(model_CO_multilevel_Year)$F,
      extract_mod_results(model_TPR_multilevel_Year)$F,
      NA, #did not converge
      extract_mod_results(model_Cogni_multilevel_Year)$F
    ),
    ModeratorYear_df = c(
      extract_mod_results(model_CO_multilevel_Year)$df,
      extract_mod_results(model_TPR_multilevel_Year)$df,
      NA, #did not converge
      extract_mod_results(model_Cogni_multilevel_Year)$df
    ),
    ModeratorRob_F = c(
      extract_mod_results(model_CO_multilevel_Rob)$F,
      extract_mod_results(model_TPR_multilevel_Rob)$F,
      extract_mod_results(model_CTI_multilevel_Rob)$F,
      extract_mod_results(model_Cogni_multilevel_Rob)$F
    ),
    ModeratorRob_df = c(
      extract_mod_results(model_CO_multilevel_Rob)$df,
      extract_mod_results(model_TPR_multilevel_Rob)$df,
      extract_mod_results(model_CTI_multilevel_Rob)$df,
      extract_mod_results(model_Cogni_multilevel_Rob)$df
    )
  )
  return(data)
}

# Create and print the summary table
summary_table <- create_summary_table()
print(summary_table)
##    Name ModeratorAge_F ModeratorAge_df ModeratorSex_F ModeratorSex_df
## 1    CO           1.18           1, 66           0.03           1, 66
## 2   TPR           0.08           1, 59           0.01           1, 59
## 3   CTI           0.02           1, 71           0.33           1, 71
## 4 Cogni           0.53          1, 117           0.00          1, 118
##   ModeratorBD_F ModeratorBD_df ModeratorYear_F ModeratorYear_df ModeratorRob_F
## 1          2.07          2, 66            3.92            1, 84           1.54
## 2          4.00          2, 59            1.60            1, 77           9.23
## 3          6.92          2, 71              NA             <NA>           5.31
## 4            NA           <NA>            1.51           1, 119          14.68
##   ModeratorRob_df
## 1           2, 65
## 2           2, 58
## 3           2, 70
## 4          3, 117
write.csv(summary_table, "moderator_table.csv", row.names = FALSE)